Skip to main content
Log in

YB-1-basierte Virotherapie

Ein neues Therapiekonzept beim Urothelkarzinom der Harnblase

YB-1-based virotherapy

A new therapeutic intervention for transitional cell carcinoma of the bladder?

  • Übersichten
  • Published:
Der Urologe Aims and scope Submit manuscript

Zusammenfassung

Aktuell werden weltweit etwa 35 klinische Studien im Bereich der Tumortherapie durchgeführt, in denen onkolytische Viren zum Einsatz kommen. Erste klinische Ergebnisse zeigen in einzelnen Krankheitsbildern für diese neue Therapiestrategie bereits Erfolge. Für das Harnblasenkarzinom ist seit nunmehr zwei Dekaden keine wesentliche Weiterentwicklung in der medikamentösen Therapie, weder für das nicht-muskelinvasive (NMIBC), noch für das muskelinvasive Blasenkarzinom (MIBC) erfolgt. Könnte die Virotherapie eine neue Therapieoption für das Harnblasenkarzinom darstellen? Die Therapie mit onkolytischen Viren wird als Virotherapie bezeichnet. Diese Viren zeichnen sich dadurch aus, dass sie sich nur in Tumorzellen vermehren und diese letztlich zerstören. Zusätzlich kann durch das Virus eine Immunreaktion gegen den Tumor ausgelöst werden. Bisherige klinische Studien haben ein hohes Sicherheitsprofil onkolytischer Viren bestätigt. Weltweit arbeiten verschiedene Gruppen an der Entwicklung onkolytischer Viren zur Behandlung des Blasenkarzinoms mit einem Fokus auf das NMIBC. In den USA läuft dabei aktuell bereits eine Phase-II/III-Studie in Patienten mit einem NMIBC. In unserer Arbeitsgruppe ist ein onkolytisches Adenovirus entwickelt worden, für das eine klinische Phase-I-Studie im Gliom in Planung ist. Dieses Virus wird aktuell für die Therapie des Blasenkarzinoms weiterentwickelt. In diesem Artikel sollen die aktuellen Entwicklungen mit onkolytischen Viren in der Tumortherapie dargestellt werden.

Abstract

Therapeutic intervention using oncolytic viruses is called virotherapy. This type of virus is defined by the ability to replicate in tumor cells only and to destroy these cells upon replication. In addition, this virus type is able to induce a tumor-directed immune response. Early clinical trials have confirmed the safety profile of oncolytic viruses. Currently, different groups are working on the development of oncolytic viruses with a focus on treatment of nonmuscle invasive bladder cancer (NMIBC). A preliminary active recruiting clinical phase II/III trial ongoing in patients with a NMIBC was recently implemented in the United States. Our research group developed an oncolytic adenovirus that will soon enter a clinical phase I trial in patients diagnosed with glioma. This virus is being further modified for the treatment of NMIBC. In this review article, recent developments in the design and use of virotherapy in bladder cancer are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Kaatsch P, Spix C (2013) Krebs in Deutschland 2009/2010. Gesundheitsberichterstattung des Bundes, 9. Aufl. Robert Koch-Institut, Berlin

  2. Weizer AZ, Tallman C, Montgomery JS (2011) Long-term outcomes of intravesical therapy for non-muscle invasive bladder cancer. World J Urol 29(1):59–71

    Article  CAS  PubMed  Google Scholar 

  3. Burger M, Oosterlinck W, Konety B et al (2013) ICUD-EAU international consultation on bladder cancer 2012: non-muscle-invasive urothelial carcinoma of the bladder. Eur Urol 63(1):36–44

    Article  PubMed  Google Scholar 

  4. Babjuk M, Burger M, Zigeuner R et al (2013) EAU guidelines on non-muscle-invasive urothelial carcinoma of the bladder: update 2013. Eur Urol 64(4):639–653

    Article  PubMed  Google Scholar 

  5. Bluming AZ, Ziegler JL (1971) Regression of Burkitt’s lymphoma in association with measles infection. Lancet 2(7715):105–106

    Article  CAS  PubMed  Google Scholar 

  6. Tesniere A, Apetoh L, Ghiringhelli F et al (2008) Immunogenic cancer cell death: a key-lock paradigm. Curr Opin Immunol 20(5):504–511

    Article  CAS  PubMed  Google Scholar 

  7. Wang F, Tian H, Qi M et al (2012) Biodistribution and safety assessment of bladder cancer specific recombinant oncolytic adenovirus in subcutaneous xenografts tumor model in nude mice. Curr Gene Ther 12(2):67–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Burke J (2010) Virus therapy for bladder cancer. Cytokine Growth Factor Rev 21(2–3):99–102

  9. Wang H, Satoh M, Abe H et al (2006) Oncolytic viral therapy by bladder instillation using an E1A, E1B double-restricted adenovirus in an orthotopic bladder cancer model. Urology 68(3):674–681

    Article  PubMed  Google Scholar 

  10. Wang H, Cai Z, Yang F et al (2013) Enhanced antitumor efficacy of integrin-targeted oncolytic adenovirus AxdAdB3-F/RGD on bladder cancer. Urology 7:161–166

    Google Scholar 

  11. Kuball J, Wen SF, Leissner J et al (2002) Successful adenovirus-mediated wild-type p53 gene transfer in patients with bladder cancer by intravesical vector instillation. J Clin Oncol 20(4):957–965

    Article  CAS  PubMed  Google Scholar 

  12. Dinney CP, Fisher MB, Navai N et al (2013) Phase I trial of intravesical recombinant adenovirus mediated interferon-alpha2b formulated in Syn3 for Bacillus Calmette-Guerin failures in nonmuscle invasive bladder cancer. J Urol 190(3):850–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Buscarini M, Quek ML, Gilliam-Hegarich S et al (2007) Adenoviral receptor expression of normal bladder and transitional cell carcinoma of the bladder. Urol Int 78(2):160–166

    Article  CAS  PubMed  Google Scholar 

  14. Ramesh N, Ge Y, Ennist DL et al (2006) CG0070, a conditionally replicating granulocyte macrophage colony-stimulating factor – armed oncolytic adenovirus for the treatment of bladder cancer. Clin Cancer Res 12(1):305–313

    Article  CAS  PubMed  Google Scholar 

  15. Potts KG, Hitt MM, Moore RB (2012) Oncolytic viruses in the treatment of bladder cancer. Adv Urol 2012:404581

    Article  PubMed  PubMed Central  Google Scholar 

  16. Han C, Hao L, Chen M et al (2013) Target expression of Staphylococcus enterotoxin A from an oncolytic adenovirus suppresses mouse bladder tumor growth and recruits CD3 + T cell. Tumour Biol 34(5):2863–2869

    Article  CAS  PubMed  Google Scholar 

  17. Zhang J, Ramesh N, Chen Y et al (2002) Identification of human uroplakin II promoter and its use in the construction of CG8840, a urothelium-specific adenovirus variant that eliminates established bladder tumors in combination with docetaxel. Cancer Res 62(13):3743–3750

    CAS  PubMed  Google Scholar 

  18. Burke JM, Lamm DL, Meng MV et al (2012) A first in human phase 1 study of CG0070, a GM-CSF expressing oncolytic adenovirus, for the treatment of nonmuscle invasive bladder cancer. J Urol 188(6):2391–2397

    Article  CAS  PubMed  Google Scholar 

  19. Holzmuller R, Mantwill K, Haczek C et al (2011) YB-1 dependent virotherapy in combination with temozolomide as a multimodal therapy approach to eradicate malignant glioma. Int J Cancer 129(5):1265–1276

    Article  PubMed  Google Scholar 

  20. Lasham A, Print CG, Woolley AG et al (2013) YB-1: oncoprotein, prognostic marker and therapeutic target? Biochem J 449(1):11–23

    Article  CAS  PubMed  Google Scholar 

  21. Kolk A, Jubitz N, Mengele K et al (2011) Expression of Y-box-binding protein YB-1 allows stratification into long- and short-term survivors of head and neck cancer patients. Br J Cancer 105(12):1864–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Song YH, Shiota M, Yokomizo A et al (2013) Twist1 and Y-box-binding protein-1 are potential prognostic factors in bladder cancer. Urol Oncol 32(1):31.e1-7

    PubMed  Google Scholar 

  23. Gluz O, Mengele K, Schmitt M et al (2009) Y-box-binding protein YB-1 identifies high-risk patients with primary breast cancer benefiting from rapidly cycled tandem high-dose adjuvant chemotherapy. J Clin Oncol 27(36):6144–6151

    Article  CAS  PubMed  Google Scholar 

  24. Evdokimova V, Tognon C, Ng T et al (2009) Translational activation of snail1 and other developmentally regulated transcription factors by YB-1 promotes an epithelial-mesenchymal transition. Cancer Cell 15(5):402–415

    Article  CAS  PubMed  Google Scholar 

  25. Shiota M, Izumi H, Onitsuka T et al (2008) Twist promotes tumor cell growth through YB-1 expression. Cancer Res 68(1):98–105

    Article  CAS  PubMed  Google Scholar 

  26. Cheng GZ, Zhang WZ, Sun M et al (2008) Twist is transcriptionally induced by activation of STAT3 and mediates STAT3 oncogenic function. J Biol Chem 283(21):14665–14673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Astanehe A, Jiang H, Hu K et al (2009) The transcriptional induction of PIK3CA in tumor cells is dependent on the oncoprotein Y-box binding protein-1. Oncogene 28(25):2406–2418

    Article  CAS  PubMed  Google Scholar 

  28. Coles LS, Lambrusco L, Burrows J et al (2005) Phosphorylation of cold shock domain/Y-box proteins by ERK2 and GSK3beta and repression of the human VEGF promoter. FEBS Lett 579(24):5372–5378

    Article  CAS  PubMed  Google Scholar 

  29. Basaki Y, Hosoi F, Oda Y et al (2007) Akt-dependent nuclear localization of Y-box-binding protein 1 in acquisition of malignant characteristics by human ovarian cancer cells. Oncogene 26(19):2736–2746

    Article  CAS  PubMed  Google Scholar 

  30. Wu J, Lee C, Yokom D et al (2007) YB-1 is a transcription/translation factor that orchestrates the oncogenome by hardwiring signal transduction to gene expression. Transl Oncogenomics 2:49–65

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Koike K, Uchiumi T, Ohga T et al (1997) Nuclear translocation of the Y-box binding protein by ultraviolet irradiation. FEBS Lett 417(3):390–394

    Article  CAS  PubMed  Google Scholar 

  32. Shiota M, Yokomizo A, Itsumi M et al (2010) Twist1 and Y-box-binding protein-1 promote malignant potential in bladder cancer cells. BJU Int 108(2 Pt 2):E142-9

    Article  PubMed  Google Scholar 

  33. Platt FM, Hurst CD, Taylor CF et al (2009) Spectrum of phosphatidylinositol 3-kinase pathway gene alterations in bladder cancer. Clin Cancer Res 15(19):6008–6017

    Article  CAS  PubMed  Google Scholar 

  34. Ross RL, Askham JM, Knowles MA (2013) PIK3CA mutation spectrum in urothelial carcinoma reflects cell context-dependent signaling and phenotypic outputs. Oncogene 32(6):768–776

    Article  CAS  PubMed  Google Scholar 

  35. Rhijn BW van (2012) Combining molecular and pathologic data to prognosticate non-muscle-invasive bladder cancer. Urol Oncol 30(4):518–523

    Article  PubMed  Google Scholar 

  36. Choi W, Porten S1, Kim S et al (2014) Identification of distinct Basal and luminal subtypes of muscle-invasive bladder cancer with different sensitivities to frontline chemotherapy. Cancer Cell 25(2):152–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Damrauer JS, Hoadley KA, Chism DD et al (2014) Intrinsic subtypes of high-grade bladder cancer reflect the hallmarks of breast cancer biology. Proc Natl Acad Sci USA 111(8):3110–3115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Network TCGAR (2014) Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 507(7492):315–322

    Article  Google Scholar 

  39. Kandoth C, McLellan MD, Vandin F et al (2013) Mutational landscape and significance across 12 major cancer types. Nature 502(7471):333–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lawrence MS, Stojanov P, Polak P et al (2013) Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499(7457):214–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rognoni E, Widmaier M, Haczek C et al (2009) Adenovirus-based virotherapy enabled by cellular YB-1 expression in vitro and in vivo. Cancer Gene Ther 16(10):753–763

    Article  CAS  PubMed  Google Scholar 

  42. Mantwill K, Dravits T (2006) Inhibition of the multidrug-resistant phenotype by targeting YB-1 with a conditionally oncolytic adenovirus: implications for combinatorial treatment regimen with chemotherapeutic agents. Cancer Res 66(14):7195–7202

    Article  CAS  PubMed  Google Scholar 

  43. Glockzin G, Mantwill K, Juerchott K et al (2006) Characterization of the recombinant adenovirus vector AdYB-1: implications for oncolytic vector development. J Virol 80(8):3904–3911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Holm PS, Bergmann S, Jurchott K et al (2004) Multidrug-resistant cancer cells facilitate E1-independent adenoviral replication: impact for cancer gene therapy. Cancer Res 64(1):322–328

    Article  CAS  PubMed  Google Scholar 

  45. Holm PS, Bergmann S, Jurchott K et al (2002) YB-1 relocates to the nucleus in adenovirus-infected cells and facilitates viral replication by inducing E2 gene expression through the E2 late promoter. J Biol Chem 277(12):10427–10434

    Article  CAS  PubMed  Google Scholar 

  46. Alonso MM, Gomez-Manzano C, Bekele BN et al (2007) Adenovirus-based strategies overcome temozolomide resistance by silencing the O6-methylguanine-DNA methyltransferase promoter. Cancer Res 67(24):11499–11504

    Article  CAS  PubMed  Google Scholar 

  47. Quirin C, Mainka A, Hesse A et al (2007) Combining adenoviral oncolysis with temozolomide improves cell killing of melanoma cells. Int J Cancer 121(12):2801–2807

    Article  CAS  PubMed  Google Scholar 

  48. Mantwill K, Naumann U, Seznec J et al (2013) YB-1 dependent oncolytic adenovirus efficiently inhibits tumor growth of glioma cancer stem like cells. J Transl Med 11(1):216

    Article  PubMed  PubMed Central  Google Scholar 

  49. Hepburn AC, Veeratterapillay R, Williamson SC et al (2012) Side population in human non-muscle invasive bladder cancer enriches for cancer stem cells that are maintained by MAPK signalling. PLoS One 7(11):e50690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Geletneky K, Huesing J, Rommelaere J et al (2012) Phase I/IIa study of intratumoral/intracerebral or intravenous/intracerebral administration of Parvovirus H-1 (ParvOryx) in patients with progressive primary or recurrent glioblastoma multiforme: ParvOryx01 protocol. BMC Cancer 12:99

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kim KH, Dmitriev IP, Saddekni S et al (2013) A phase I clinical trial of Ad5/3-Delta24, a novel serotype-chimeric, infectivity-enhanced, conditionally-replicative adenovirus (CRAd), in patients with recurrent ovarian cancer. Gynecol Oncol 130(3):518–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nemunaitis J, Tong AW, Nemunaitis M et al (2010) A phase I study of telomerase-specific replication competent oncolytic adenovirus (telomelysin) for various solid tumors. Mol Ther 18(2):429–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chang J, Zhao X, Wu X et al (2009) A Phase I study of KH901, a conditionally replicating granulocyte-macrophage colony-stimulating factor: armed oncolytic adenovirus for the treatment of head and neck cancers. Cancer Biol Ther 8(8):676–682

    Article  CAS  PubMed  Google Scholar 

  54. Harrington KJ, Kazi R, Bhide SA et al (2010) Novel therapeutic approaches to squamous cell carcinoma of the head and neck using biologically targeted agents. Indian J Cancer 47(3):248–259

    Article  CAS  PubMed  Google Scholar 

  55. Senzer NN, Kaufman HL, Amatruda T et al (2009) Phase II clinical trial of a granulocyte-macrophage colony-stimulating factor-encoding, second-generation oncolytic herpesvirus in patients with unresectable metastatic melanoma. J Clin Oncol 27(34):5763–5771

    Article  CAS  PubMed  Google Scholar 

  56. Heo NY, Lee HC, Park YK et al (2013) Lack of association between hepatitis B virus pre-S mutations and recurrence after surgical resection in hepatocellular carcinoma. J Med Virol 85(4):589–596

    Article  CAS  PubMed  Google Scholar 

  57. Galanis E, Hartmann LC, Cliby WA et al (2010) Phase I trial of intraperitoneal administration of an oncolytic measles virus strain engineered to express carcinoembryonic antigen for recurrent ovarian cancer. Cancer Res 70(3):875–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Morris DG, Feng X, Di Francesco LM et al (2013) REO-001: a phase I trial of percutaneous intralesional administration of reovirus type 3 dearing (Reolysin(R)) in patients with advanced solid tumors. Invest New Drugs 31(3):696–706

    Article  CAS  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. P.S. Holm, M. Retz, J.E. Gschwend und R. Nawroth geben an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P.S. Holm.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holm, P., Retz, M., Gschwend, J. et al. YB-1-basierte Virotherapie. Urologe 55, 356–363 (2016). https://doi.org/10.1007/s00120-015-3811-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00120-015-3811-6

Schlüsselwörter

Keywords

Navigation