Skip to main content
Log in

Epigenetik des Urothelkarzinoms

Pathogenese, verbesserte Diagnostik und neue Therapieansätze

Epigenetics in urothelial cancer

Pathogenesis, improving diagnostics and developing novel treatment options

  • Übersichten
  • Published:
Der Urologe Aims and scope Submit manuscript

Zusammenfassung

Für das Urothelkarzinom der Harnblase werden dringend neue diagnostische Biomarker und neue therapeutische Angriffsziele als Alternative oder Ergänzung zur klassischen Chemotherapie benötigt. Epigenetische Veränderungen könnten dafür geeignet sein, da sie von zentraler Bedeutung für Entstehung und Progression von Urothelkarzinomen sind. Vermutlich tragen sie zu gestörten Differenzierungsprozessen und zu gesteigertem Metastasierungspotential bei. Solche Veränderungen betreffen DNA-Methylierung, Histonmodifikationen, Chromatinremodellierung, lange nichtkodierende RNA und microRNA. Faktoren, die an der Regulation von Histonmodifikationen oder Chromatinremodellierung beteiligt sind, sind beim Urothelkarzinom deutlich häufiger durch Mutationen inaktiviert als bei anderen Tumorarten. Daher wären solche Enzyme, nach gründlicher Untersuchung ihrer komplexen Wirkungsweisen, wahrscheinlich als neue therapeutische Angriffsziele geeignet. Veränderungen der DNA-Methylierung oder der microRNA-Expression kommen als diagnostische oder prognostische Biomarker in Frage, müssen aber durch umfassende Studien unter standardisierten Bedingungen validiert werden.

Abstract

Urothelial carcinoma of the bladder is a common tumor for which improvements in diagnostic markers and new therapy approaches, in addition to or combined with standard chemotherapy, are urgently required. Epigenetic alterations could provide both novel diagnostic markers and therapeutic targets as they are emerging as crucial factors in the development and progression of this tumor type, likely contributing to altered differentiation and metastatic potential. These alterations affect DNA methylation, histone modifications, chromatin remodeling, long noncoding RNAs, and microRNAs. Factors involved in histone modifications and chromatin remodeling appear to be particularly frequently inactivated by mutations. Thus, histone-modifying enzymes may represent good targets for rational new therapeutic approaches, although thorough investigation of their complex functions is a prerequisite. DNA methylation changes and altered miRNA expression provide promising biomarkers for diagnosis and prognosis that need further validation in comprehensive and well-standardized studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Allard S, Masson JY, Cote J (2004) Chromatin remodeling and the maintenance of genome integrity. Biochim Biophys Acta 1677:158–164

    Article  CAS  PubMed  Google Scholar 

  2. Asangani IA, Dommeti VL, Wang X et al (2014) Therapeutic targeting of BET bromodomain proteins in castration-resistant prostate cancer. Nature 510:278–282

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Becker PB, Workman JL (2013) Nucleosome remodeling and epigenetics. Cold Spring Harb Perspect Biol 5

  4. Besaratinia A, Cockburn M, Tommasi S (2013) Alterations of DNA methylome in human bladder cancer. Epigenetics 8:1013–1022

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Cabili MN, Trapnell C, Goff L et al (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25:1915–1927

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Catto JW, Alcaraz A, Bjartell AS et al (2011) MicroRNA in prostate, bladder, and kidney cancer: a systematic review. Eur Urol 59:671–681

    Article  CAS  PubMed  Google Scholar 

  7. Chen H, Yu Y, Rong S et al (2014) Evaluation of diagnostic accuracy of DNA methylation biomarkers for bladder cancer: a systematic review and meta-analysis. Biomarkers 19:189–197

    Article  CAS  PubMed  Google Scholar 

  8. Costa VL, Henrique R, Danielsen SA et al (2010) Three epigenetic biomarkers, GDF15, TMEFF2, and VIM, accurately predict bladder cancer from DNA-based analyses of urine samples. Clin Cancer Res 16(23):5842–5851

    Article  CAS  PubMed  Google Scholar 

  9. Fendler A, Jung K (2013) MicroRNAs as new diagnostic and prognostic biomarkers in urological tumors. Crit Rev Oncog 18:289–302

    Article  PubMed  Google Scholar 

  10. Guancial EA, Bellmunt J, Yeh S et al (2014) The evolving understanding of microRNA in bladder cancer. Urol Oncol 32:41 31–40

    Article  PubMed  Google Scholar 

  11. Gui Y, Guo G, Huang Y et al (2011) Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder. Nat Genet 43:875–878

    Article  CAS  PubMed  Google Scholar 

  12. Guo G, Sun X, Chen C et al (2013) Whole-genome and whole-exome sequencing of bladder cancer identifies frequent alterations in genes involved in sister chromatid cohesion and segregation. Nat Genet 45:1459–1463

    Article  CAS  PubMed  Google Scholar 

  13. Gupta RA, Shah N, Wang KC et al (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464:1071–1076

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. He W, Cai Q, Sun F et al (2013) linc-UBC1 physically associates with polycomb repressive complex 2 (PRC2) and acts as a negative prognostic factor for lymph node metastasis and survival in bladder cancer. Biochim Biophys Acta 1832:1528–1537

    Article  CAS  PubMed  Google Scholar 

  15. Jeronimo C, Henrique R (2014) Epigenetic biomarkers in urological tumors: a systematic review. Cancer Lett 342:264–274

    Article  CAS  PubMed  Google Scholar 

  16. Kandimalla R, van Tilborg AA, Kompier LC et al (2012) Genome-wide analysis of CpG island methylation in bladder cancer identified TBX2, TBX3, GATA2, and ZIC4 as pTa-specific prognostic markers. Eur Urol 61(6):1245–1256

    Article  CAS  PubMed  Google Scholar 

  17. Kim K, Jutooru I, Chadalapaka G et al (2013) HOTAIR is a negative prognostic factor and exhibits pro-oncogenic activity in pancreatic cancer. Oncogene 32:1616–1625

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Kim YJ, Yoon HY, Kim JS et al (2013) HOXA9, ISL1 and ALDH1A3 methylation patterns as prognostic markers for nonmuscle invasive bladder cancer: array-based DNA methylation and expression profiling. Int J Cancer 133:1135–1142

    Article  CAS  PubMed  Google Scholar 

  19. Kreimer U, Schulz WA, Koch A et al (2013) HERV-K and LINE-1 DNA methylation and reexpression in urothelial carcinoma. Front Oncol 3:255

    Article  PubMed Central  PubMed  Google Scholar 

  20. Lauss M, Aine M, Sjödahl G et al (2012) DNA methylation analyses of urothelial carcinoma reveal distinct epigenetic subtypes and an association between gene copy number and methylation status. Epigenetics 7(8):858–867

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Lee JT, Bartolomei MS (2013) X-inactivation, imprinting, and long noncoding RNAs in health and disease. Cell 152:1308–1323

    Article  CAS  PubMed  Google Scholar 

  22. Lehmann M, Hoffmann MJ, Koch A et al (2014) Histone deacetylase 8 is deregulated in urothelial cancer but not a target for efficient treatment. J Exp Clin Cancer Res 33:59

    Article  PubMed Central  PubMed  Google Scholar 

  23. Liu W, Lindberg J, Sui G et al (2012) Identification of novel CHD1-associated collaborative alterations of genomic structure and functional assessment of CHD1 in prostate cancer. Oncogene 31:3939–3948

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Marsit CJ, Houseman EA, Christensen BC et al (2010) Identification of methylated genes associated with aggressive bladder cancer. PLoS One 5(8):e12334

    Article  PubMed Central  PubMed  Google Scholar 

  25. Mccabe MT, Creasy CL (2014) EZH2 as a potential target in cancer therapy. Epigenomics 6:341–351

    Article  CAS  PubMed  Google Scholar 

  26. Mlcochova H, Hezova R, Stanik M et al (2014) Urine microRNAs as potential noninvasive biomarkers in urologic cancers. Urol Oncol 32:41 41–49

    Article  PubMed  Google Scholar 

  27. Nakagawa T, Endo H, Yokoyama M et al (2013) Large noncoding RNA HOTAIR enhances aggressive biological behavior and is associated with short disease-free survival in human non-small cell lung cancer. Biochem Biophys Res Commun 436:319–324

    Article  CAS  PubMed  Google Scholar 

  28. Ntziachristos P, Tsirigos A, Welstead GG et al (2014) Contrasting roles of histone 3 lysine 27 demethylases in acute lymphoblastic leukaemia. Nature 514(7523):513–517

    Article  CAS  PubMed  Google Scholar 

  29. Plass C, Pfister SM, Lindroth AM et al (2013) Mutations in regulators of the epigenome and their connections to global chromatin patterns in cancer. Nat Rev Genet 14:765–780

    Article  CAS  PubMed  Google Scholar 

  30. Reinert T, Modin C, Castano FM et al (2011) Comprehensive genome methylation analysis in bladder cancer: identification and validation of novel methylated genes and application of these as urinary tumor markers. Clin Cancer Res 17(17)

  31. Reinert T (2012) Methylation markers for urine-based detection of bladder cancer: the next generation of urinary markers for diagnosis and surveillance of bladder cancer. Adv Urol 2012:503271

    Article  PubMed Central  PubMed  Google Scholar 

  32. Rosik L, Niegisch G, Fischer U et al (2014) Limited efficacy of specific HDAC6 inhibition in urothelial cancer cells. Cancer Biol Ther 15(6):742–757

    Article  PubMed  Google Scholar 

  33. Sanchez-Carbayo M (2012) Hypermethylation in bladder cancer: biological pathways and translational applications. Tumour Biol 33:347–361

    Article  CAS  PubMed  Google Scholar 

  34. Schulz W, Koutsogiannouli E, Niegisch G et al (2015) Epigenetics of urothelial carcinoma. In: Verma M (Hrsg) Cancer epigenetics: risk assessment, diagnosis, treatment, and prognosis. Humana Press, New York

  35. Schulz WA (2014) Integrating epigenetics. Biol Chem 395:1263–1264

    Article  CAS  PubMed  Google Scholar 

  36. Shimizu T, Suzuki H, Nojima M et al (2013) Methylation of a panel of microRNA genes is a novel biomarker for detection of bladder cancer. Eur Urol 63:1091–1100

    Article  CAS  PubMed  Google Scholar 

  37. Sorensen KP, Thomassen M, Tan Q et al (2013) Long non-coding RNA HOTAIR is an independent prognostic marker of metastasis in estrogen receptor-positive primary breast cancer. Breast Cancer Res Treat 142:529–536

    Article  PubMed  Google Scholar 

  38. Su SF, De Castro Abreu AL, Chihara Y et al (2014) A panel of three markers hyper- and hypomethylated in urine sediments accurately predicts bladder cancer recurrence. Clin Cancer Res 20:1978–1989

    Article  CAS  PubMed  Google Scholar 

  39. Swygert SG, Peterson CL (2014) Chromatin dynamics: interplay between remodeling enzymes and histone modifications. Biochim Biophys Acta 1839:728–736

    Article  CAS  PubMed  Google Scholar 

  40. Tcga (2014) Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 507:315–322

    Article  Google Scholar 

  41. Wang L, Fu D, Qiu Y et al (2014) Genome-wide screening and identification of long noncoding RNAs and their interaction with protein coding RNAs in bladder urothelial cell carcinoma. Cancer Lett 349:77–86

    Article  CAS  PubMed  Google Scholar 

  42. Wang Y, Chen W, Yang C et al (2012) Long non-coding RNA UCA1a(CUDR) promotes proliferation and tumorigenesis of bladder cancer. Int J Oncol 41:276–284

    CAS  PubMed  Google Scholar 

  43. Witt O, Deubzer HE, Milde T et al (2009) HDAC family: what are the cancer relevant targets? Cancer Lett 277:8–21

    Article  CAS  PubMed  Google Scholar 

  44. Wolff EM, Chihara Y, Pan F et al (2010) Unique DNA methylation patterns distinguish noninvasive and invasive urothelial cancers and establish an epigenetic field defect in premalignant tissue. Cancer Res 70(20):8169–8178

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Wu JN, Roberts CW (2013) ARID1A mutations in cancer: another epigenetic tumor suppressor? Cancer Discov 3:35–43

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Wu RC, Wang TL, Shih Ie M (2014) The emerging roles of ARID1A in tumor suppression. Cancer Biol Ther 15:655–664

    Article  PubMed  Google Scholar 

  47. Yan TH, Lu SW, Huang YQ et al (2014) Upregulation of the long noncoding RNA HOTAIR predicts recurrence in stage Ta/T1 bladder cancer. Tumour Biol 35(10):10249–10257

    Article  CAS  PubMed  Google Scholar 

  48. Ying L, Huang Y, Chen H et al (2013) Downregulated MEG3 activates autophagy and increases cell proliferation in bladder cancer. Mol Biosyst 9:407–411

    Article  CAS  PubMed  Google Scholar 

  49. Zhang Q, Su M, Lu G et al (2013) The complexity of bladder cancer: long noncoding RNAs are on the stage. Mol Cancer 12:101

    Article  PubMed Central  PubMed  Google Scholar 

  50. Zhu YP, Bian XJ, Ye DW et al (2014) Long noncoding RNA expression signatures of bladder cancer revealed by microarray. Oncol Lett 7:1197–1202

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. Unsere Arbeiten zum Thema werden durch die Deutsche Forschungsgemeinschaft, die Forschungskommission der Medizinischen Fakultät und die Bodossaki-Stiftung gefördert. G. Niegisch, M.J. Hoffmann, E.A. Koutsogiannouli und W.A. Schulz geben an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Niegisch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niegisch, G., Hoffmann, M., Koutsogiannouli, E. et al. Epigenetik des Urothelkarzinoms. Urologe 54, 526–532 (2015). https://doi.org/10.1007/s00120-014-3756-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00120-014-3756-1

Schlüsselwörter

Keywords

Navigation