Skip to main content

Advertisement

Log in

Metastasiertes Nierenzellkarzinom

Bestimmung der Plasmaspiegel der Tyrosinkinaseinhibitoren Sunitinib, Sorafenib und Pazopanib

Metastasized renal cell carcinoma

Measurement of plasma levels of the tyrosine kinase inhibitors sunitinib, sorafenib and pazopanib

  • Originalien
  • Published:
Der Urologe Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

In der Sequenztherapie des metastasierten Nierenzellkarzinoms (mNZK) wird u. a. die Gruppe der Tyrosinkinaseinhibitoren (TKI) eingesetzt. Diese Arbeit präsentiert eine Machbarkeitsstudie zur Bestimmung der Plasmaspiegel von Sunitinib, Sorafenib und Pazopanib mittels Tandemmassenspektrometrie im klinischen Alltag.

Methode

Das untersuchte Patientenkollektiv umfasste 23 Patienten, die aufgrund eines mNZK mit Sunitinib (n = 16), Sorafenib (n = 3) oder Pazopanib (n = 4) behandelt wurden. Untersuchungsmaterial waren 100 μl einer Plasmaprobe. Die Proben wurden mittels Flüssigchromatographie (LC) getrennt, die Plasmakonzentration der TKI dann mittels Tandemmassenspektrometrie (MS/MS) ermittelt.

Ergebnisse

Es waren Plasmaspiegel aller Substanzen messbar, die Ergebnisse waren reproduzierbar. Die Proben waren bei 4 °C 1 Woche lagerungsstabil. Die maximal nachgewiesenen Plasmaspiegel lagen bei 99 ng/ml (Sunitinib), 9,8 μg/ml (Sorafenib) und 63 μg/ml (Pazopanib). Spiegelschwankungen der TKI waren analog zu Dosisänderungen oder Behandlungspausen nachweisbar.

Schlussfolgerung

Die Messung der Plasmaspiegel von TKI mittels LC-MS/MS ist möglich. Zur Klärung der Frage, ob Schwellenwerte für Nebenwirkungen oder Therapieansprechen existieren und welchen Stellenwert und Nutzen dieses Verfahrens im klinischen Alltag haben kann, müssen weitere klinische Studien angeschlossen werden.

Abstract

Background

Several tyrosine kinase inhibitors (TKI) are used in the treatment of metastasized renal cell carcinoma (mRCC). This article presents a feasibility study for the measurement of plasma levels of sunitinib, sorafenib and pazopanib using liquid chromatography tandem mass spectrometry (LC-MS/MS).

Methods

A total of 23 patients suffering from mRCC under treatment with sunitinib (n=16), sorafenib (n=3) and pazopanib (n=4) were included. Plasma samples (100 µl) were separated by liquid chromatographic analysis and the plasma levels of the TKIs determined by tandem mass spectrometry.

Results

The plasma levels of sunitinib, sorafenib and pazopanib were measurable and the results reproducible. During storage of the plasma samples for 1 week at 4°C no significant decrease of the initial concentration was found. The highest plasma levels detected were 99 ng/ml for sunitinib, 9.8 µg/ml for sorafenib and 63 µg/ml for pazopanib. We could show variability in plasma levels according to changes in dosage of TKIs or during treatment-free intervals.

Conclusion

Measurement of TKI plasma levels using LC-MS/MS is feasible. Further clinical studies have to be conducted to examine if there are any threshold levels for the incidence of adverse events or response to treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Albiges L, Choueiri T, Escudier B et al (2014) A systematic review of sequencing and combinations of systemic therapy in metastatic renal cancer. Eur Urol (Epub ahead of print). doi:10.1016/j.eururo.2014.04.006

  2. Di Gion P, Kanefendt F, Lindauer A et al (2011) Clinical pharmacokinetics of tyrosine kinase inhibitors: focus on pyrimidines, pyridines and pyrroles. Clin Pharmacokinet 50(9):551–603

    Article  Google Scholar 

  3. Escudier B, Eisen T, Stadler WM et al (2007) Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med 356(2):125–134

    Article  CAS  PubMed  Google Scholar 

  4. Escudier B, Gore M (2013) Sequencing therapy in metastatic renal cell cancer. Semin Oncol 40(4):465–471

    Article  CAS  PubMed  Google Scholar 

  5. Faivre S, Delbaldo C, Vera K et al (2006) Safety, pharmacokinetic, and antitumor activity of SU11248, a novel oral multitarget tyrosine kinase inhibitor, in patients with cancer. J Clin Oncol 24(1):25–35

    Article  CAS  PubMed  Google Scholar 

  6. Götze L, Hegele A, Metzelder SK et al (2012) Development and clinical application of a LC-MS/MS method for simultaneous determination of various tyrosine kinase inhibitors in human plasma. Clin Chim Acta 413(1–2):143–149

  7. Guilhot F, Hughes TP, Cortes J et al (2012) Plasma exposure of imatinib and its correlation with clinical response in the Tyrosine Kinase Inhibitor Optimization and Selectivity Trial. Haematologica 97(5):731–738

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Hurwitz HI, Dowlati A, Saini S et al (2009) Phase I trial of pazopanib in patients with advanced cancer. Clin Cancer Res 15(12):4220–4227

    Article  CAS  PubMed  Google Scholar 

  9. Lankheet NA Kloth JS, Gadellaa-van Hooijdonk CG et al (2014) Pharmacokinetically guided sunitinib dosing: a feasibility study in patients with advanced solid tumours. Br J Cancer 110(10):2441–2449

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Lankheet NA, Knapen LM, Schellens JH et al (2014) Plasma concentrations of tyrosine kinase inhibitors imatinib, erlotinib, and sunitinib in routine clinical outpatient cancer care. Ther Drug Monit 36(3):326–334

    Article  CAS  PubMed  Google Scholar 

  11. Larson RA, Druker BJ, Guilhot F et al (2008) Imatinib pharmacokinetics and its correlation with response and safety in chronic-phase chronic myeloid leukemia: a subanalysis of the IRIS study. Blood 111(8):4022–4028

    Article  CAS  PubMed  Google Scholar 

  12. Lin Y (2011) Relationship between plasma pazopanib concentration and incidence of adverse events in renal cell carcinoma. J Clin Oncol 29:(suppl 7; abstr 345)

  13. Mendel DB, Laird AD, Xin X et al (2003) In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin Cancer Res 9(1):327–337

    CAS  PubMed  Google Scholar 

  14. Molina AM, Motzer RJ, Heng DY (2013) Systemic treatment options for untreated patients with metastatic clear cell renal cancer. Semin Oncol 40(4):436–434

    Article  CAS  PubMed  Google Scholar 

  15. Motzer RJ, Hutson TE, Tomczak P et al (2007) Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med 356(2):115–124

    Article  CAS  PubMed  Google Scholar 

  16. Picard S, Titier K, Etienne G et al (2007) Trough imatinib plasma levels are associated with both cytogenetic and molecular responses to standard-dose imatinib in chronic myeloid leukemia. Blood 109(8):3496–3499

    Article  CAS  PubMed  Google Scholar 

  17. Rini BI, Escudier B, Tomczak P et al (2011) Comparative effectiveness of axitinib versus sorafenib in advanced renal cell carcinoma (AXIS): a randomised phase 3 trial. Lancet 378(9807):1931–1939

    Article  CAS  PubMed  Google Scholar 

  18. Sparidans RW, Durmus S, Xu N et al (2012) Liquid chromatography-tandem mass spectrometric assay for therapeutic drug monitoring of the tyrosine kinase inhibitor pazopanib in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 905:137–140

    Article  CAS  PubMed  Google Scholar 

  19. Sternberg CN, Davis ID, Mardiak J et al (2010) Pazopanib in locally advanced or metastatic renal cell carcinoma: results of a randomized phase III trial. J Clin Oncol 28(6):1061–1068

    Article  CAS  PubMed  Google Scholar 

  20. Suttle B, Ball HA, Molimard M et al (2010) Relationship between exposure to pazopanib (P) and efficacy in patients (pts) with advanced renal cell carcinoma (mRCC). J Clin Oncol 28:15s, (suppl; abstr 3048)

    Google Scholar 

  21. Teng JF, Mabasa VH, Ensom MH (2012) The role of therapeutic drug monitoring of imatinib in patients with chronic myeloid leukemia and metastatic or unresectable gastrointestinal stromal tumors. Ther Drug Monit 34(1):85–97

    Article  CAS  PubMed  Google Scholar 

  22. Pal SK, Vogelzang NJ (2013) Sequential treatment strategies and combination therapy regimens in metastatic renal cell carcinoma. Clin Adv Hematol Oncol 11(3):146–155

    PubMed  Google Scholar 

  23. Erp NP van, Gelderblom H, Guchelaar HJ (2009) Clinical pharmacokinetics of tyrosine kinase inhibitors. Cancer Treat Rev 35(8):692–706

    Article  PubMed  Google Scholar 

  24. Leeuwen RW, van Gelder T, Mathijssen RH et al (2014) Drug-drug interactions with tyrosine-kinase inhibitors: a clinical perspective. Lancet Oncol 15: 469–470. doi:10.1016/S1470-2045(13)70579-70575

    Article  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. C. Keil, L. Götze, P. Olbert, R. Hofmann, W.A. Nockher und A. Hegele geben an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Keil.

Additional information

C. Keil und A. Hegele haben gleichberechtigte Autorenschaft.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keil, C., Götze, L., Olbert, P. et al. Metastasiertes Nierenzellkarzinom. Urologe 54, 811–818 (2015). https://doi.org/10.1007/s00120-014-3711-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00120-014-3711-1

Schlüsselwörter

Keywords

Navigation