Skip to main content
Log in

Translationale Uroradioonkologie

Translational uroradio-oncology

  • Übersichten
  • Published:
Der Urologe Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Entwicklungen in der modernen Radioonkologie ermöglichen heute eine biologisch, physikalisch und technisch stratifizierte individualisierte Behandlung. In der Uroonkologie kann die Strahlentherapie heute als valide Behandlungsalternative für eine Reihe von Erkrankungen angeboten werden, wie für das Prostatakarzinom oder das Urothelkarzinom.

Methode

Durch Optimierung der Zielgenauigkeit der Bestrahlung konnten entscheidende Verbesserungen in der Tumorkontrolle erzielt werden, während das Risiko für Nebenwirkungen reduziert werden konnte. Techniken der Hochpräzisionsstrahlentherapie, sowie Kombinationen von Bestrahlung und moderner Bildgebung ermöglichen eine tägliche maßgeschneiderte Strahlentherapie.

Schlussfolgerung

Zukünftig können biologische Charakteristika von Tumor und Normalgewebe, sowie molekulare Marker für eine Therapiestratifizierung herangezogen werden.

Abstract

Background

Recent developments and innovations in modern radiation oncology enable radiation oncologists to deliver a biologically, physically and technically stratified individualized treatment. In urological oncology, radiotherapy can be offered as a valid treatment alternative for a number of tumors, such as prostate cancer or urothelial cancer/bladder cancer.

Methods

By improving the precision of radiotherapy, significant improvement in tumor control can be achieved, coupled with a reduction of the risk of treatment-related side effects. Techniques such as high precision radiotherapy and combinations of radiation and modern imaging, such as image-guided radiotherapy (IGRT) and adaptive radiotherapy (ART), make daily individually tailored treatment possible.

Conclusions

In the future the biological characteristics of tumors and of normal tissue as well as molecular markers can be used for treatment stratification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Holthusen H (1950) Development of the concept of dosage in the therapeutic use of ionizing rays. Strahlentherapie 82:487–502

    PubMed  CAS  Google Scholar 

  2. Kuban DA, Levy LB, Cheung MR et al (2011) Long-term failure patterns and survival in a randomized dose-escalation trial for prostate cancer. Who dies of disease? Int J Radiat Oncol Biol Phys 79:1310–1317

    Article  PubMed  Google Scholar 

  3. Kuban DA, Tucker SL, Dong L et al (2008) Long-term results of the M. D. Anderson randomized dose-escalation trial for prostate cancer. Int J Radiat Oncol Biol Phys 70:67–74

    Article  PubMed  Google Scholar 

  4. Boer SF de, Kumek Y, Jaggernauth W, Podgorsak MB (2007) The effect of beam energy on the quality of IMRT plans for prostate conformal radiotherapy. Technol Cancer Res Treat 6:139–146

    PubMed  Google Scholar 

  5. De Crevoisier R, Melancon AD, Kuban DA et al (2007) Changes in the pelvic anatomy after an IMRT treatment fraction of prostate cancer. Int J Radiat Oncol Biol Phys 68:1529–1536

    Article  Google Scholar 

  6. Frank SJ, Dong L, Kudchadker RJ et al (2008) Quantification of prostate and seminal vesicle interfraction variation during IMRT. Int J Radiat Oncol Biol Phys 71:813–820

    Article  PubMed  Google Scholar 

  7. Huang E, Dong L, Chandra A et al (2002) Intrafraction prostate motion during IMRT for prostate cancer. Int J Radiat Oncol Biol Phys 53:261–268

    Article  PubMed  Google Scholar 

  8. Little DJ, Dong L, Levy LB et al (2003) Use of portal images and BAT ultrasonography to measure setup error and organ motion for prostate IMRT: implications for treatment margins. Int J Radiat Oncol Biol Phys 56:1218–1224

    Article  PubMed  Google Scholar 

  9. Mohan R, Zhang X, Wang H et al (2005) Use of deformed intensity distributions for on-line modification of image-guided IMRT to account for interfractional anatomic changes. Int J Radiat Oncol Biol Phys 61:1258–1266

    Article  PubMed  Google Scholar 

  10. Quan EM, Li X, Li Y et al (2012) A comprehensive comparison of IMRT and VMAT plan quality for prostate cancer treatment. Int J Radiat Oncol Biol Phys 83:1169–1178

    Article  PubMed  Google Scholar 

  11. Tucker SL, Zhang M, Dong L et al (2006) Cluster model analysis of late rectal bleeding after IMRT of prostate cancer: a case-control study. Int J Radiat Oncol Biol Phys 64:1255–1264

    Article  PubMed  Google Scholar 

  12. Wertz H, Lohr F, Dobler B et al (2007) Dosimetric consequences of a translational isocenter correction based on image guidance for intensity modulated radiotherapy (IMRT) of the prostate. Phys Med Biol 52:5655–5665

    Article  PubMed  CAS  Google Scholar 

  13. Zelefsky MJ, Fuks Z, Happersett L et al (2000) Clinical experience with intensity modulated radiation therapy (IMRT) in prostate cancer. Radiother Oncol 55:241–249

    Article  PubMed  CAS  Google Scholar 

  14. Song DY, Herfarth KK, Uhl M et al (2013) A multi-institutional clinical trial of rectal dose reduction via injected polyethylene-glycol hydrogel during intensity modulated radiation therapy for prostate cancer: analysis of dosimetric outcomes. Int J Radiat Oncol Biol Phys (Epub ahead of print)

  15. Miralbell R, Ozsoy O, Pugliesi A et al (2003) Dosimetric implications of changes in patient repositioning and organ motion in conformal radiotherapy for prostate cancer. Radiother Oncol 66:197–202

    Article  PubMed  Google Scholar 

  16. Shah AP, Kupelian PA, Willoughby TR et al (2011) An evaluation of intrafraction motion of the prostate in the prone and supine positions using electromagnetic tracking. Radiother Oncol 99:37–43

    Article  PubMed  Google Scholar 

  17. Rodel C, Weiss C, Sauer R (2007) Combined systemic therapy and radiotherapy for bladder cancer. Strahlenther Onkol 183(2):29–31

    Article  PubMed  Google Scholar 

  18. Weiss C, Rodel C (2012) Urological cancer: chemoradiation superior in muscle-invasive bladder cancer. Nat Rev Clin Oncol 9:374–375

    Article  PubMed  Google Scholar 

  19. Weiss C, Romer F von, Capalbo G et al (2009) Survivin expression as a predictive marker for local control in patients with high-risk T1 bladder cancer treated with transurethral resection and radiochemotherapy. Int J Radiat Oncol Biol Phys 74:1455–1460

    Article  PubMed  CAS  Google Scholar 

  20. Weiss C, Engehausen DG, Krause FS et al (2007) Radiochemotherapy with cisplatin and 5-fluorouracil after transurethral surgery in patients with bladder cancer. Int J Radiat Oncol Biol Phys 68:1072–1080

    Article  PubMed  CAS  Google Scholar 

  21. Habermehl D, Henkner K, Ecker S et al (2013) Evaluation of different fiducial markers for image-guided radiotherapy and particle therapy. J Radiat Res 54(Suppl 1):61–68

    Article  Google Scholar 

  22. Baumann M, Krause M, Thames H et al (2009) Cancer stem cells and radiotherapy. Int J Radiat Biol 85:391–402

    Article  PubMed  CAS  Google Scholar 

  23. Yaromina A, Kroeber T, Meinzer A et al (2011) Exploratory study of the prognostic value of microenvironmental parameters during fractionated irradiation in human squamous cell carcinoma xenografts. Int J Radiat Oncol Biol Phys 80:1205–1213

    Article  PubMed  Google Scholar 

  24. Yaromina A, Krause M, Thames H et al (2007) Pre-treatment number of clonogenic cells and their radiosensitivity are major determinants of local tumour control after fractionated irradiation. Radiother Oncol 83:304–310

    Article  PubMed  CAS  Google Scholar 

  25. Zips D, Boke S, Kroeber T et al (2011) Prognostic value of radiobiological hypoxia during fractionated irradiation for local tumor control. Strahlenther Onkol 187:306–310

    Article  PubMed  Google Scholar 

  26. Holthusen H, Braun R (1933) Grundlagen und Praxis der Röntgenstrahldosierung, Thieme, Leipzig

  27. Zietman AL, Bae K, Slater JD et al (2010) Randomized trial comparing conventional-dose with high-dose conformal radiation therapy in early-stage adenocarcinoma of the prostate: long-term results from proton radiation oncology group/american college of radiology 95-09. J Clin Oncol 28:1106–1111

    Article  PubMed  Google Scholar 

  28. Talcott JA, Rossi C, Shipley WU et al (2010) Patient-reported long-term outcomes after conventional and high-dose combined proton and photon radiation for early prostate cancer. JAMA 303:1046–1053

    Article  PubMed  CAS  Google Scholar 

  29. Combs SE, Bohl J, Elsasser T et al (2009) Radiobiological evaluation and correlation with the local effect model (LEM) of carbon ion radiation therapy and temozolomide in glioblastoma cell lines. Int J Radiat Biol 85:126–137

    Article  PubMed  CAS  Google Scholar 

  30. Elsasser T, Scholz M (2006) Improvement of the local effect model (LEM) – implications of clustered DNA damage. Radiat Prot Dosimetry 122:475–477

    Article  PubMed  Google Scholar 

  31. Elsasser T, Kramer M, Scholz M (2008) Accuracy of the local effect model for the prediction of biologic effects of carbon ion beams in vitro and in vivo. Int J Radiat Oncol Biol Phys 71:866–872

    Article  PubMed  Google Scholar 

  32. Bert C, Saito N, Schmidt A et al (2007) Target motion tracking with a scanned particle beam. Med Phys 34:4768–4771

    Article  PubMed  Google Scholar 

  33. Bert C, Rietzel E (2007) 4D treatment planning for scanned ion beams. Radiat Oncol 2:24

    Article  PubMed  Google Scholar 

  34. Bert C, Grozinger SO, Rietzel E (2008) Quantification of interplay effects of scanned particle beams and moving targets. Phys Med Biol 53:2253–2265

    Article  PubMed  Google Scholar 

  35. Bert C, Gemmel A, Saito N, Rietzel E (2009) Gated irradiation with scanned particle beams. Int J Radiat Oncol Biol Phys 73:1270–1275

    Article  PubMed  Google Scholar 

  36. Bert C, Gemmel A, Saito N et al (2010) Dosimetric precision of an ion beam tracking system. Radiat Oncol 5:61

    Article  PubMed  Google Scholar 

  37. Rietzel E, Bert C (2010) Respiratory motion management in particle therapy. Med Phys 37:449–460

    Article  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. S.E. Combs und J. Debus geben an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.E. Combs MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Combs, S., Debus, J. Translationale Uroradioonkologie. Urologe 52, 1276–1282 (2013). https://doi.org/10.1007/s00120-013-3314-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00120-013-3314-2

Schlüsselwörter

Keywords

Navigation