Skip to main content
Log in

Medikamentöse Tumortherapie urogenitaler Malignome

Rationale bildgebende Diagnostik

Pharmacological therapy of urogenital cancer

Rational routine diagnostic imaging

  • Leitthema
  • Published:
Der Urologe Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Die bildgebende Diagnostik stellt einen integralen Bestandteil der Diagnostik, der Verlaufskontrolle sowie der Nachsorge von Patienten mit einem metastasierten Malignom des Urogenitaltrakts dar. Die aktuellen Leitlinien sprechen nur eine selten evidenzbasierte Empfehlung bezüglich der optimalen Modalität und Zeitintervalle der Bildgebung unter medikamentöser Tumortherapie (MTT) aus. Es ist Zielsetzung der vorliegenden Arbeit, den uroonkologisch tätigen Mediziner mit wissenschaftlich belegten Empfehlungen zur bildgebenden Diagnostik unter MTT urogenitaler Malignome auszustatten.

Ergebnisse

Grundlage der Beurteilung des therapeutischen Ansprechens von Weichteilmetastasen unter MTT stellen die RECIST-Kriterien („response evaluation criteria in solid tumors“) dar, das Ansprechen ossärer Metastasen erfolgt mittels Skelettszintigraphie (SZ) und objektiven Algorithmen. Bei Patienten mit metastasierten testikulären Keimzelltumoren (KZT) stellt die Computertomographie (CT) des Thorax, des Abdomens und kleinen Beckens die Bildgebung der Wahl nach abgeschlossener Systemtherapie dar. Lediglich bei seminomatösen KZT mit einem retroperitonealen Residualtumor ≥ 3 cm wird eine Fluordesoxyglukose-Positronenemissionstomographie (FDG-PET)/CT gefordert. Beim metastasierten Nierenzellkarzinom unter molekularer Therapie ist die bildgebende Diagnostik mittels CT in dreimonatlichen Intervallen sinnvoll. Eine FDG-PET/CT kann bereits 8 Wochen nach Therapiebeginn Aussagen über ein therapeutisches Ansprechen zulassen. Beim metastasierten Urothelkarzinom sollte eine Bildgebung nach jedem 2. Zyklus der systemischen Chemotherapie erfolgen. In Abhängigkeit der Metastasenlokalisation stehen CT, SZ oder konventionelles Röntgen zur Verfügung. Beim metastasierten Prostatakarzinom (PCA) unter Androgendeprivation ist eine bildgebende Diagnostik nur bei symptomatischer Progression oder geplanter Therapieänderung erforderlich; ansonsten gilt der PSA-Verlauf (prostataspezifisches Antigen) als valider Surrogatmarker für Ansprechen oder Progression. Bei kastrationsresistentem PCA unter Chemotherapie werden bildgebende Untersuchungen mittels CT oder Magnetresonanztomographie auch nur bei Änderung der Symptomatik oder geplanter Therapieänderung erforderlich. Regelmäßige bildgebende Verlaufskontrollen bei PSA-Ansprechen sind nicht indiziert. Wird das metastasierte kastrationsresistente PCA (KRPCA) mit Lyaseinhibitoren oder Inhibitoren der Androgenrezeptor Signalkaskaden therapiert, sind bildgebende Verlaufskontrollen aufgrund der fehlenden Verlässlichkeit des PSA als Surrogatmarker des Ansprechens in 3-monatlichen Intervallen indiziert.

Schlussfolgerung

Die bildgebenden Untersuchungen zur Beurteilung des therapeutischen Ansprechens urogenitaler Malignome unter MTT sind abhängig von der Tumortherapie, der Art des Karzinoms und den möglichen therapeutischen Konsequenzen individuell zu wählen.

Abstract

Background

Imaging studies are an integral and important diagnostic modality to stage, monitor, and follow-up patients with metastatic urogenital cancer. The currently available guidelines on diagnosis and treatment of urogenital cancer do not provide the clinician with evidence-based recommendations for daily routine. It is the aim of the current manuscript to develop scientifically valid recommendations with regard to the most appropriate imaging technique and the most useful time interval in metastatic urogenital cancer patients undergoing systemic therapy.

Results

Therapeutic response of soft tissue metastases is evaluated with the use of the RECIST criteria. In skeletal metastases, bone scans with validated algorithms must be performed to assess response. In patients with testicular germ cell tumors, computed tomography (CT) of the chest, the retroperitoneum, and the abdomen represents the standard imaging technique of choice usually performed prior to and at the end of systemic chemotherapy. Only in seminomas with residual tumors > 3 cm in diameter should FDG-PET/CT be performed about 6 weeks after chemotherapy. Metastatic renal cell carcinomas treated with molecular targeted therapies are routinely evaluated by CT scans at 3 month intervals. In specific cases, FDG-PET/CT is able to predict responses as early as 8 weeks after initiation of treatment. In patients with metastatic urothelial carcinomas, imaging studies should be performed after every second cycle of cytotoxic therapy. In patients with metastatic prostate cancer, the modality and the frequency of imaging studies depends on the type of the treatment. In men undergoing androgen deprivation therapy, no routine imaging studies are recommended except for patients with new onset symptoms or significant PSA progression prior to change of treatment. In men with metastatic castration-resistant PCA who are treated with cytotoxic regimes, routine imaging studies in the presence of decreasing or stable PSA serum concentrations are not indicated. In men treated with lyase inhibitor or inhibitors of the androgen receptor signaling cascade, imaging studies should be performed at 3 month intervals due to the low correlation of PSA serum concentrations with clinical response.

Conclusions

Imaging studies to assess therapeutic response to systemic treatment in metastatic cancers of the urogenital tract must be chosen depending on the treatment regime, primary organ, and potential consequences of the findings. Routine imaging studies without specific clinical or therapeutic relevance are not justified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Albers P, Albrecht W, Algaba F et al (2011) Guidelines on testicular cancer. 2001 Update. Eur Urol 60:304–319

    Article  PubMed  Google Scholar 

  2. Heidenreich A, Bellmunt J, Bolla M et al (2011) Part 1: screening, diagnosis, and treatment of clinically localised disease. Eur Urol 59(1):61–71

    Article  PubMed  Google Scholar 

  3. Mottet N, Bellmunt J, Bolla M et al (2011) Part II: Treatment of advanced, relapsing, and castration-resistant prostate cancer. Eur Urol 59(4):572–583

    Article  PubMed  Google Scholar 

  4. Ljungberg B, Cowan NC, Hanbury DC et al (2010) EAU guidelines on renal cell carcinoma: the 2010 update. Eur Urol 58(3):398–406

    Article  PubMed  Google Scholar 

  5. Stenzl A, Cowan NC, De Santis M et al (2011) Treatment of muscle-invasive and metastatic bladder cancer: update of the EAU guidelines. Eur Urol 59(6):1009–1018

    Article  PubMed  CAS  Google Scholar 

  6. Eisenhauer EA, Therasse P, Bogaerts J et al (2009) New response evaluation criteria in solid tumors: revised RECIST guideline (version 1.1). Eur J Cancer 45:228–247

    Article  PubMed  CAS  Google Scholar 

  7. Winer-Muram HT (2006) The solitary pulmonary nodule. Radiology 239:34–49

    Article  PubMed  Google Scholar 

  8. Wormanns D, Ludwig K, Beyer F et al (2005) Detection of pulmonary nodules at multirow-detector CT: effectiveness of double reading to improve sensitivity at standard-dose and low-dose chest CT. Eur Radiol 15:14–22

    Article  PubMed  Google Scholar 

  9. Schröder T, Rühm SG, Debatin JF et al (2005) Detection of pulmonary nodules using 2D HASTE MR sequence: comparison with MDCT. AJR Am J Roentgenol 185:979–984

    Article  Google Scholar 

  10. Fujimoto K (2008) Usefulness of contrast-enhanced magnetic resonance imaging for evaluating solitary pulmonary nodules. Cancer Imaging 8:36–44

    Article  PubMed  Google Scholar 

  11. Kim JH, Kim HJ, Lee KH et al (2004) Solitary pulmonary nodules: a comparative study evaluated with contrast-enhanced dynamic MR imaging and CT. J Comput Assist Tomogr 28:766–775

    Article  PubMed  Google Scholar 

  12. Kanematsu M, Kondo H, Goshima S et al (2006) Imaging liver metastases: review and update. Eur J Radiol 58:217–228

    Article  PubMed  Google Scholar 

  13. Khan SA (2009) Imaging of liver cancer. World J Gastroenterol 15:1289–1300

    Article  PubMed  Google Scholar 

  14. Ba-Ssalamah A, Fakhrai N, Matzek WK et al (2007) Magnetic resonance imaging of liver malignancies. Top Magn Reson Imaging 18:445–455

    Article  PubMed  Google Scholar 

  15. Barrett T, Choyke PL, Kobayashi H (2006) Imaging of the lymphatic system: new horizons. Contrast Media Mol Imaging 1:230–245

    Article  PubMed  CAS  Google Scholar 

  16. Krug B, Heidenreich A, Dietlein M et al (1999) Lymphknotenstaging maligner testikulärer Keimzelltumoren. Fortschr Röntgenstr 171:87–94

    Article  CAS  Google Scholar 

  17. Morisawa N, Koyama T, Togashi K (2006) Metastatic lymph nodes in urogenital cancers: contribution of imaging findings. Abdom Imaging 31:620–629

    Article  PubMed  CAS  Google Scholar 

  18. Bellin MF, Lebleu L, Meric JB (2003) Evaluation of retroperitoneal and pelvic lymph node metastases with MRI and MRI lymphangiography. Abdom Imaging 28:155–163

    Article  PubMed  CAS  Google Scholar 

  19. Islam T, Harisinghani MG (2009) Overview of nanoparticle use in cancer imaging. Cancer Biomark 5:61–67

    PubMed  CAS  Google Scholar 

  20. Powles T, Murray I, Brock C et al (2007) Molecular positron emission tomography and PET/CT imaging in urological malignancies. Eur Urol 51:1511–1521

    Article  PubMed  Google Scholar 

  21. Schaffer Dl, Pendergrass HP (1976) Comparison of enzyme, clinical, radiographic and radionuclide methods of detecting bone metastases from carcinoma of the prostate. Radiology 121:431–434

    PubMed  CAS  Google Scholar 

  22. Pollen JJ, Gerber K, Ashburn WL, Schmidt JD (1981) The value of nuclear bone imaging in advanced prostate cancer. J Urol 125:222–233

    PubMed  CAS  Google Scholar 

  23. Ghanem N, Uhl M, Brink I et al (2005) Diagnostic value of MRI in comparison to scintigraphy, PET, MS-CT and PET/CT for the detection of metastases of bone. Eur J Radiol 55:41–55

    Article  PubMed  CAS  Google Scholar 

  24. Nakanishi K, Kobayashi M, Nakaguchi K et al (2007) Whole-body MRI for detecting metastatic bone tumor: diagnostic value of diffusion-weighted images. Magn Reson Med Sci 6:147–155

    Article  PubMed  Google Scholar 

  25. Schlemmer HP, Schäfer J, Pfannenberg C et al (2005) Fast whole-body assessment of metastatic disease using a novel magnetic resonance imaging system: initial experiences. Invest Radiol 40:64–71

    Article  PubMed  Google Scholar 

  26. Schmidt GP, Schoenberg SO, Reiser MF, Baur-Malnyk A (2005) Whole-body MR imaging of bone marrow. Eur J Radiol 55:33–40

    Article  PubMed  CAS  Google Scholar 

  27. Tombal B, Rezazadeh A, Therasse P et al (2005) Magnetic resonance imaging of the axial skeleton enables objective measurement of tumor response on prostate cancer bone metastases. Prostate 65:178–187

    Article  PubMed  Google Scholar 

  28. Lecouvet FE, Geukens D, Stainier A et al (2007) Magnetic resonance imaging of the axial skeleton for detecting bone metastases in patients with high-risk prostate cancer: diagnostic and cost-effectiveness and comparison with current detection strategies. J Clin Oncol 25:3281–3287

    Article  PubMed  Google Scholar 

  29. Schmidt GP, Schoenberg SO, Schmid R et al (2007) Screening for bone metastases: whole-body MRI using a 32-channel system versus dual-modality PET-CT. Eur Radiol 17:939–949

    Article  PubMed  Google Scholar 

  30. Krege S, Beyer J, Souchon R et al (2008) European consensus conference on diagnosis and treatment of germ cell cancer: a report of the second meeting of the European Germ Cell Cancer Consensus Group (EGCCCG): Part II. Eur Urol 53:497–513

    Article  PubMed  Google Scholar 

  31. Sohaib SA, Koh DM, Barbachano Y et al (2009) Prospective assessment of MRI for imaging retroperitoneal metastases from testicular germ cell tumours. Clin Radiol 64(4):362–367

    Article  PubMed  CAS  Google Scholar 

  32. Heidenreich A, Thüer D, Polyakov S (2008) Postchemotherapy retroperitoneal lymph node dissection in advanced germ cell tumours of the testis. Eur Urol 53:260–272

    Article  PubMed  Google Scholar 

  33. Akbulut Z, Canda AE, Atmaca AF et al (2011) Is positron emission tomography reliable to predict post-chemotherapy retroperitoneal lymph node involvement in advanced germ cell tumors of the testis? Urol J Spring 8(2):120–126

    Google Scholar 

  34. Bachner M, Loriot Y, Gross-Goupil M et al (2012) 2–18fluoro-deoxy-D-glucose positron emission tomography (FDG-PET) for postchemotherapy seminoma residual lesions: a retrospective validation of the SEMPET trial. Ann Oncol 23:59–64

    Article  PubMed  CAS  Google Scholar 

  35. Picchio M, Briganti A, Fanti S et al (2011) The role of choline positron emission tomography/computed tomography in the management of patients with prostate-specific antigen progression after radical treatment of prostate cancer. Eur Urol 59(1):51–60

    Article  PubMed  Google Scholar 

  36. Bono JS de, Logothetis CJ, Molina A et al (2011) Abiraterone and increased survival in metastatic prostate cancer. N Engl J Med 364:1995–2005

    Article  PubMed  Google Scholar 

  37. Fizazi K, Scher HI, Molina A et al (2012) Abiraterone acetate for treatment of metastatic castration-resistant prostate cancer: final overall survival analysis of the COU-AA-301 randomised, double-blind, placebo-controlled phase 3 study. Lancet Oncol 13:983–992

    Article  PubMed  CAS  Google Scholar 

  38. Scher HI, Fizazi K, Saad F et al (2012) Increased Survival with Enzalutamide in Prostate Cancer after Chemotherapy. N Engl J Med 367:1187–1197

    Article  PubMed  CAS  Google Scholar 

  39. Scher HI, Halabi S, Tannock I et al (2008) Design and end points of clinical trials for patients with progressive prostate cancer and castrate levels of testosterone: recommendations of the Prostate Cancer Clinical Trials Working Group. J Clin Oncol 26(7):1148–1159

    Article  PubMed  Google Scholar 

  40. Yahara J, Noguchi M, Noda S (2003) Quantitative evaluation of bone metastases in patients with advanced prostate cancer during systemic treatment. BJU Int 92:379–384

    Article  PubMed  CAS  Google Scholar 

  41. García JR, Simó M, Soler M et al (2005) Relative roles of bone scintigraphy and positron emission tomography in assessing the treatment response of bone metastases. Eur J Nucl Med Mol Imaging 32:1243–1244

    Article  PubMed  Google Scholar 

  42. Tateishi U, Gamez C, Dawood S et al (2008) Bone metastases in patients with metastatic breast cancer. Morphologic and metabolic monitoring of response to systemic therapy with integrated PET/CT. Radiology 247:189–196

    Article  PubMed  Google Scholar 

  43. Lindholm P, Lapely M, Nagren K et al (2009) Preliminary study of carbon-11 methionine PET in the evaluation of early response to therapy in advanced breast cancer. Nucl Med Commun 30:30–36

    Article  PubMed  CAS  Google Scholar 

  44. Stafford SE, Gralow JR, Schubert EK et al (2002) Use of serial FDG PET to measure the response of bone-dominant breast cancer to therapy. Acad Radiol 9:913–921

    Article  PubMed  Google Scholar 

  45. Beheshti M, Vali R, Waldenberger P et al (2008) Detection of bone metastases in patients with prostate cancer by F-18 fluorocholine and F-18 fluoride PET-CT: a comparative study. Eur J Nucl Med Mol Imaging 35:1766–1774

    Article  PubMed  Google Scholar 

  46. Smith AD, Shah SN, Rini BI et al (2010) Morphology, attentuation, size, and structure (MASS) criteria: assessing response and predicting clinical outcome in metastatic renal cell carcinoma on antiangiogenic targeted therapy. AJR Am J Roentgenol 194:1470–1478

    Article  PubMed  Google Scholar 

  47. Nishino M, Jagannathan JP, Krajewski KM et al (2012) Personalized tumor response assessment in the era of molecular medicine: cancer-specific and therapy-specific response criteria to complement pitfalls of RECIST. AJR Am J Roentgenol 198:737–745

    Article  PubMed  Google Scholar 

  48. Braunagel M, Graser A, Reiser M et al (2013) The role of functional imaging in the era of targeted therapy in renal cell carcinoma. World J Urol (Epub ahead of print)

  49. Lamuraglia M, Escudier B, Chami L et al (2006) To predict progression-free survival and overall survival in metastatic renal cancer treated with sorafenib: pilot study using dynamic contrast-enhanced Doppler ultrasound. Eur J Cancer 42:2472–2479

    Article  PubMed  CAS  Google Scholar 

  50. Lassau N, Koscielny S, Albiges L et al (2010) Metastatic renal cell carcinoma treated with sunitinib: early evaluation of treatment response using dynamic contrast-enhanced ultrasonography. Clin Cancer Res 16:1216–1225

    Article  PubMed  CAS  Google Scholar 

  51. Fournier LS, Oudard S, Thiam R et al (2010) Metastatic renal carcinoma: evaluation of antiangiogenic therapy with dynamic contrast-enhanced CT. Radiology 256:511–518

    Article  PubMed  Google Scholar 

  52. Hahn OM, Yang C, Medved M et al (2008) Dynamic contrast-enhanced magnetic resonance imaging pharmacodynamic biomarker study of sorafenib in metastatic renal carcinoma. J Clin Oncol 26:4572–4578

    Article  PubMed  CAS  Google Scholar 

  53. Desar IM, ter Voert EG, Hambrock T et al (2011) Functional MRI techniques demonstrate early vascular changes in renal cell cancer patients treated with sunitinib: a pilot study. Cancer Imaging 11:259–265

    Article  CAS  Google Scholar 

  54. Vercellino L, Bousquet G, Baillet G et al (2009) 18F-FDG-PET/CT imaging for an early response assessment of response to sunitinib in metastatic renal carcinoma: preliminary study. Cancer Biother Radiopharm 24:137–144

    Article  PubMed  CAS  Google Scholar 

  55. Kayani I, Avril N, Bomanji J et al (2011) Sequential FDG-PET/CT as a biomarker of response to sunitinib in metastatic clear cell renal cancer. Clin Cancer Res 17:6021–6028

    Article  PubMed  CAS  Google Scholar 

  56. Heidenreich A, Albers P, Classen J et al (2010) Imaging studies in metastatic urogenital cancer patients undergoing systemic therapy: recommendations of a multidisciplinary consensus meeting of the Association of Urological Oncology of the German Cancer Society. Urol Int 85:1–10

    Article  PubMed  Google Scholar 

  57. Choi H (2008) Response evaluation of gastrointestinal stromal tumors. Oncologist 13(Suppl 2):4–7

    Article  PubMed  Google Scholar 

  58. Nakanishi K, Kobayashi M, Nakaguchi K et al (2007) Whole-body MRI for detecting metastatic bone tumor: diagnostic value of diffusion-weighted images. Magn Reson Med Sci 6:147–155

    Article  PubMed  Google Scholar 

  59. Schmidt GP, Schoenberg SO, Schmid R et al (2007) Screening for bone metastases: whole-body MRI using a 32-channel system versus dual-modality PET-CT. Eur Radiol 17:939–949

    Article  PubMed  Google Scholar 

  60. Sternberg CN, Pansadoro V, Calabro F et al (2003) Can patient selection for bladder preservation be based on response nto chemotherapy? Cancer 97:1644–1652

    Article  PubMed  Google Scholar 

  61. Kibel AS, Dehdashti F, Katz MD et al (2009) Prospective study of 18F fluorodeoxyglucose positron emission tomography/computed tomography for staging of muscle-invasive bladder carcinoma. J Clin Oncol 27:4314–4320

    Article  PubMed  Google Scholar 

  62. Mertens LS, Fioole-Bruining A, Rhijn BWG van et al (2013) FDG-positron emission tomography/computerized tomography for monitoring the response of pelvic lymph node metastases to neoadjuvant chemotherapy for bladder cancer. J Urol 189:1687–1691

    Article  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. A. Heidenreich und S. Krege geben an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Heidenreich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heidenreich, A., Krege, S. Medikamentöse Tumortherapie urogenitaler Malignome. Urologe 52, 1564–1573 (2013). https://doi.org/10.1007/s00120-013-3253-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00120-013-3253-y

Schlüsselwörter

Keywords

Navigation