Skip to main content

Personalisierte Uroonkologie auf der Grundlage einer molekularen Uropathologie

Was ist die Zukunft?

Personalized urooncology based on molecular uropathology

What is the future?


Die durch zielgerichtete Therapien und Biomarkervalidierung forcierte Weiterentwicklung der personalisierten Onkologie ist in allen klinischen Bereichen auf dem Vormarsch. Verglichen mit anderen Fächern wie der Pneumologie und der Gynäkologie war die Entwicklung in der Urologie bisher verhalten, gewinnt aber seit kurzen zunehmend an Dynamik. Mit eine Grundlage hierfür ist die derzeit wachsende und zukünftig noch beschleunigte Anwendung neuer molekularbiologischer Erkenntnisse in der Uropathologie. Dabei wird der rasche Erkenntnisgewinn vorangetrieben durch eine ganz neue Klasse von Analyseverfahren, wie der hochparallelen Sequenzierung („deep sequencing“ oder „next generation sequencing“), die quasi einen neuen „Kosmos“ von potentiellen Biomarkern verfügbar machen. In diesem Beitrag möchten wir den sich abzeichnenden Paradigmenwechsel in der molekularpathologischen Diagnostik urologischer Tumore am Beispiel des Prostatakarzinoms aufzeigen.


Targeted therapies and biomarker validation are key drivers in the advancement of personalized oncology which is a growing topic in all clinical areas. Compared with other professions, such as pulmonology and gynecology, development in urology has so far been retarded but has recently gained increasing momentum. A basis for this is the currently growing and in future accelerated application of new knowledge derived from molecular biology in the field of uropathology. The rapid gain of knowledge is driven by a whole new class of analytical methods, such as massively parallel sequencing (deep sequencing or next generation sequencing), which enables analysis of virtually a new universe of potential biomarkers. This article describes the emerging paradigm shift in molecular pathological diagnostics of urological tumors using the example of prostate cancer.

This is a preview of subscription content, access via your institution.


  1. Ablin RJ, Bronson P, Soanes WA, Witebsky E (1970) Tissue- and species-specific antigens of normal human prostatic tissue. J Immunol 104:1329–1339

    PubMed  CAS  Google Scholar 

  2. Beltran H, Yelensky R, Frampton GM et al (2013) Targeted next-generation sequencing of advanced prostate cancer identifies potential therapeutic targets and disease heterogeneity. Eur Urol 63:920–926

    PubMed  Article  CAS  Google Scholar 

  3. Brenner JC, Ateeq B, Li Y et al (2011) Mechanistic rationale for inhibition of poly(ADP-ribose) polymerase in ETS gene fusion-positive prostate cancer. Cancer Cell 19:664–678

    PubMed  Article  CAS  Google Scholar 

  4. Bussemakers MJ, Bokhoven A van, Verhaegh GW et al (1999) DD3: a new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Res 59:5975–5979

    PubMed  CAS  Google Scholar 

  5. Carver BS, Tran J, Gopalan A et al (2009) Aberrant ERG expression cooperates with loss of PTEN to promote cancer progression in the prostate. Nat Genet 41:619–624

    PubMed  Article  CAS  Google Scholar 

  6. Catto JW, Alcaraz A, Bjartell AS et al (2011) MicroRNA in prostate, bladder, and kidney cancer: a systematic review. Eur Urol 59:671–681

    PubMed  Article  CAS  Google Scholar 

  7. Dawson SJ, Rueda OM, Aparicio S, Caldas (2013). A new genome-driven integrated classification of breast cancer and its implications. EMBO J 32(5):617–628. doi: 10.1038/emboj.2013.19

    PubMed  Article  CAS  Google Scholar 

  8. Dehm SM, Schmidt LJ, Heemers HV et al (2008) Splicing of a novel androgen receptor exon generates a constitutively active androgen receptor that mediates prostate cancer therapy resistance. Cancer Res 68:5469–5477

    PubMed  Article  CAS  Google Scholar 

  9. Dunham I et al (2012) The ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74

    PubMed  Article  CAS  Google Scholar 

  10. Esgueva R, Park K, Kim R et al (2012) Next-generation prostate cancer biobanking: toward a processing protocol amenable for the International Cancer Genome Consortium. Diagn Mol Pathol 21:61–68

    PubMed  Article  CAS  Google Scholar 

  11. Filella X, Foj L, Milà M et al (2013) PCA3 in the detection and management of early prostate cancer. Tumour Biol 34:1337–1347

    PubMed  Article  CAS  Google Scholar 

  12. Gonzalez de Castro D, Clarke PA, Al-Lazikani B, Workman P (2013) Personalized cancer medicine: molecular diagnostics, predictive biomarkers, and drug resistance. Clin Pharmacol Ther 93(3):252–259. doi: 10.1038/clpt.2012.237

    Article  Google Scholar 

  13. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. doi: 10.1016/j.cell.2011.02.013.

    PubMed  Article  CAS  Google Scholar 

  14. Hewitt RE (2011) Biobanking: the foundation of personalized medicine. Curr Opin Oncol 23:112–119 (Review)

    PubMed  Article  Google Scholar 

  15. Huber J, Herpel E, Jakobi H et al (2012) Two decades‘ experience with a prospective biobank for urologic oncology: research, clinical care, and the patients‘ view. Urol Oncol 13(2):161–173

    Google Scholar 

  16. Koh CM, Bieberich CJ, Dang CV et al (2010) MYC and prostate cancer. Genes Cancer 1:617–628

    PubMed  Article  CAS  Google Scholar 

  17. Lee K, Chae JY, Kwak C et al (2010) TMPRSS2-ERG gene fusion and clinicopathologic characteristics of Korean prostate cancer patients. Urology 76:1268.e7–1268.e13

    PubMed  Google Scholar 

  18. Lin DW (2009) Beyond PSA: utility of novel tumor markers in the setting of elevated PSA. Urol Oncol 27:315–321

    PubMed  Article  CAS  Google Scholar 

  19. Merseburger AS, Bellmunt J, Jenkins C et al (2013) Perspectives on treatment of metastatic castration-resistant prostate cancer. Oncologist 18(5):558–567

    PubMed  Article  CAS  Google Scholar 

  20. Patel R, Gao M, Ahmad I et al (2013) Sprouty2, PTEN, and PP2A interact to regulate prostate cancer progression. J Clin Invest 123:1157–1175

    PubMed  Article  CAS  Google Scholar 

  21. Prensner JR, Iyer MK, Balbin OA et al (2011) Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression. Nat Biotechnol 29:742–749

    PubMed  Article  CAS  Google Scholar 

  22. Rosen P, Sesterhenn IA, Brassell SA et al (2012) Clinical potential of the ERG oncoprotein in prostate cancer. Nat Rev Urol 9:131–137

    PubMed  Article  CAS  Google Scholar 

  23. Saal LH, Johansson P, Holm K et al (2007) Poor prognosis in carcinoma is associated with a gene expression signature of aberrant PTEN tumor suppressor pathway activity. Proc Natl Acad Sci USA 104:7564–7569

    PubMed  Article  CAS  Google Scholar 

  24. Schroeder MP, Gonzalez-Perez A, Lopez-Bigas N (2013) Visualizing multidimensional cancer genomics data. Genome Med 5(1):9

    PubMed  Article  Google Scholar 

  25. Sharifi N (2013) Minireview: androgen metabolism in castration-resistant prostate cancer. Mol Endocrinol 27:708–714

    PubMed  Article  CAS  Google Scholar 

  26. Small AC, Gong Y, Oh WK et al (2012) The emerging role of circulating tumor cell detection in genitourinary cancer. J Urol 188:21–26

    PubMed  Article  Google Scholar 

  27. Taplin ME, Bubley GJ, Shuster TD et al (1995) Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer. N Engl J Med 332:1393–1398

    PubMed  Article  CAS  Google Scholar 

  28. Tomlins SA, Rhodes DR, Perner S et al (2005) Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310:644–648

    PubMed  Article  CAS  Google Scholar 

  29. Wang J, Kobayashi T, Floc’h N et al (2012) B-Raf activation cooperates with PTEN loss to drive c-Myc expression in advanced prostate cancer. Cancer Res 72:4765–4776

    PubMed  Article  CAS  Google Scholar 

  30. Zafarana G, Ishkanian AS, Malloff CA et al (2012) Copy number alterations of c-MYC and PTEN are prognostic factors for relapse after prostate cancer radiotherapy. Cancer 118:4053–4062

    PubMed  Article  CAS  Google Scholar 

Download references


Der korrespondierende Autor gibt für sich und seine Koautoren an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to E. Dahl or F. Haller.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dahl, E., Haller, F. Personalisierte Uroonkologie auf der Grundlage einer molekularen Uropathologie. Urologe 52, 976–981 (2013).

Download citation

  • Published:

  • Issue Date:

  • DOI:


  • Personalisierte Medizin
  • Uroonkologie
  • Biomarker
  • „Next generation sequencing“
  • Prostatakarzinom


  • Personalized medicine
  • Urooncology
  • Biomarkers
  • Next generation sequencing
  • Prostate cancer