Skip to main content
Log in

Personalisierte Uroonkologie auf Grundlage einer molekularen Uropathologie

Teil 1: Was ist diagnostischer Alltag?

Personalized urooncology based on molecular uropathology

Part 1: What is diagnostic routine?

  • Leitthema
  • Published:
Der Urologe Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Zusammenfassung

Die in den letzten Jahren neu zugelassenen Therapieverfahren für die drei häufigsten Malignome des Urogenitaltraktes erfordern eine stärkere Personalisierung der Uroonkologie. In Folge dessen beschränken sich die diagnostischen Verfahren in der Pathologie nicht mehr auf Histologie und Immunhistochemie, sondern beziehen auch genetische Charakterisierungen der Tumoren ein (Mutationen und chromosomale Aberrationen).

Abstract

The approval of new therapeutic procedures for the three main malignancies of the urogenital tract in recent years has generated a need for personalization of urooncology. As a consequence the diagnostic procedures are no longer limited to histology and immunohistochemistry but also include the analysis of genetic alterations (mutations and chromosomal aberrations).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Argani P, Yonescu R, Morsberger L et al (2012) Molecular confirmation of t(6;11)(p21;q12) renal cell carcinoma in archival paraffin-embedded material using a break-apart TFEB FISH assay expands its clinicopathologic spectrum. Am J Surg Pathol 36:1516–1526

    Article  PubMed  Google Scholar 

  2. Castillo-Martin M, Domingo-Domenech J, Karni-Schmidt O et al (2010) Molecular pathways of urothelial development and bladder tumorigenesis. Urol Oncol 28:401–408

    Article  PubMed  CAS  Google Scholar 

  3. Di Martino E, Tomlinson DC, Knowles MA (2012) A decade of FGF receptor research in bladder cancer: past, present, and future challenges. Adv Urol 2012:429213

    Google Scholar 

  4. Donovan MJ, Cordon-Cardo C (2013) Predicting high-risk disease using tissue biomarkers. Curr Opin Urol 23:245–251

    PubMed  Google Scholar 

  5. Eble JN, Sauter G, Epstein JI et al (eds) (2004) Pathology and genetics of tumours of the urinary system and male genital organs. IARC Press, Lyon

  6. Fritsche HM, Burger M, Dietmaier W et al (2010) Multicolor FISH (UroVysion) facilitates follow-up of patients with high-grade urothelial carcinoma of the bladder. Am J Clin Pathol 134:597–603

    Article  PubMed  Google Scholar 

  7. Gayed BA, Seideman C, Lotan Y (2013) Cost effectiveness of fluorescence in situ hybridization in patients with atypical cytology for the detection of urothelial carcinoma. J Urol (Epub ahead of print)

  8. Gofrit ON, Zorn KC, Silvestre J et al (2008) The predictive value of multi-targeted fluorescent in-situ hybridization in patients with history of bladder cancer. Urol Oncol 26:246–249

    Article  PubMed  CAS  Google Scholar 

  9. Ljungberg B, Cowan NC, Hanbury DC et al (2010) EAU guidelines on renal cell carcinoma: the 2010 update. Eur Urol 58:398–406

    Article  PubMed  Google Scholar 

  10. Otto W, Denzinger S, Bertz S et al (2009) No mutations of FGFR3 in normal urothelium in the vicinity of urothelial carcinoma of the bladder harbouring activating FGFR3 mutations in patients with bladder cancer. Int J Cancer 125:2205–2208

    Article  PubMed  CAS  Google Scholar 

  11. Rao Q, Williamson SR, Zhang S et al (2013) TFE3 Break-apart FISH has a higher sensitivity for Xp11.2 translocation-associated renal cell Carcinoma compared with TFE3 or Cathepsin K immunohistochemical staining alone: expanding the morphologic spectrum. Am J Surg Pathol 37:804–815

    Article  PubMed  Google Scholar 

  12. Roh MH, Dal Cin P, Silverman SG et al (2010) The application of cytogenetics and fluorescence in situ hybridization to fine-needle aspiration in the diagnosis and subclassification of renal neoplasms. Cancer Cytopathol 118:137–145

    Article  PubMed  Google Scholar 

  13. Sanjmyatav J, Rubtsov N, Starke H et al (2005) Identification of tumor entities of renal cell carcinoma using interphase fluorescence in situ hybridization. J Urol 174:731–735

    Article  PubMed  Google Scholar 

  14. Shen SS, Truong LD, Scarpelli M et al (2012) Role of immunohistochemistry in diagnosing renal neoplasms: when is it really useful? Arch Pathol Lab Med 136:410–417

    Article  PubMed  Google Scholar 

  15. Sobin LH, Gospodarowicz MK, Wittekind C (Hrsg) (2009) TNM classification of malignant tumours. Wiley & Sons, Hoboken

  16. Stöhr CG, Amann K, Hartmann A (2012) Das Nierenzellkarzinom. Kompendium Nephrologie 4:22–32

    Google Scholar 

  17. Van Kessel KE, Kompier LC, De Bekker-Grob EW et al (2013) FGFR3 mutation analysis in voided urine samples to decrease cystoscopies and cost in nonmuscle invasive bladder cancer surveillance: a comparison of 3 strategies. J Urol 189:1676–1681

    Article  Google Scholar 

  18. Van Rhijn BW, Van Der Kwast TH, Liu L et al (2012) The FGFR3 mutation is related to favorable pT1 bladder cancer. J Urol 187:310–314

    Google Scholar 

  19. Van Rhijn BW, Vis AN, Van Der Kwast TH et al (2003) Molecular grading of urothelial cell carcinoma with fibroblast growth factor receptor 3 and MIB-1 is superior to pathologic grade for the prediction of clinical outcome. J Clin Oncol 21:1912–1921

    Article  Google Scholar 

  20. Van Rhijn BW, Zuiverloon TC, Vis AN et al (2010) Molecular grade (FGFR3/MIB-1) and EORTC risk scores are predictive in primary non-muscle-invasive bladder cancer. Eur Urol 58:433–441

    Article  Google Scholar 

  21. Whitson J, Berry A, Carroll P et al (2009) A multicolour fluorescence in situ hybridization test predicts recurrence in patients with high-risk superficial bladder tumours undergoing intravesical therapy. BJU Int 104:336–339

    Article  PubMed  Google Scholar 

  22. Williams SV, Hurst CD, Knowles MA (2013) Oncogenic FGFR3 gene fusions in bladder cancer. Hum Mol Genet 22:795–803

    Article  PubMed  CAS  Google Scholar 

  23. Wirth M, Weißbach L, Ackermann R et al (2011) Interdisziplinäre Leitlinie der Qualität S3 zur Früherkennung, Diagnose und Therapie der verschiedenen Stadien des Prostatakarzinoms. AWMF-Register-Nummer (043-022-OL). Gültig bis 30.09.2013. In: Leitlinienprogramm Onkologie der AWMF, Deutschen Krebsgesellschaft e. V. und Deutschen Krebshilfe e. V. unter Federführung der Deutschen Gesellschaft für Urologie (DGU) e. V, Düsseldorf

  24. Ye YK, Bi XC, He HC et al (2010) CK20 and Ki-67 as significant prognostic factors in human bladder carcinoma. Clin Exp Med 10:153–158

    Article  PubMed  CAS  Google Scholar 

  25. Zellweger T, Benz G, Cathomas G et al (2006) Multi-target fluorescence in situ hybridization in bladder washings for prediction of recurrent bladder cancer. Int J Cancer 119:1660–1665

    Article  PubMed  CAS  Google Scholar 

  26. Zuiverloon TC, Beukers W, Van Der Keur KA et al (2013) Combinations of urinary biomarkers for surveillance of patients with incident nonmuscle invasive bladder cancer: the European FP7 UROMOL project. J Urol 189:1945–1951

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenskonflikt

Der korrespondierende Autor gibt für sich und seine Koautoren an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hartmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stöhr, C., Stöhr, R., Rogler, A. et al. Personalisierte Uroonkologie auf Grundlage einer molekularen Uropathologie. Urologe 52, 970–975 (2013). https://doi.org/10.1007/s00120-013-3228-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00120-013-3228-z

Schlüsselwörter

Keywords

Navigation