Skip to main content
Log in

Anwendungsbereiche der isothermalen Mikrokalorimetrie in der Urologie

Eine Übersicht

Areas of application of isothermal microcalorimetry in urology

An overview

  • Übersichten
  • Published:
Der Urologe Aims and scope Submit manuscript

Zusammenfassung

Die isothermale Mikrokalorimetrie (IMC) ist ein nicht spezifisches Wärmemessverfahren. Die hohe Sensitivität des Verfahrens (0,2 μW) erlaubt den Nachweis kleinster Wärmemengen z. B. produziert von Mikroorganismen oder eukaryoten Zellen. Ziel dieser Übersichtsarbeit ist es, technische Grundlagen mikrokalorimetrischer Messungen zu vermitteln sowie über Vergangenheit, Gegenwart und Zukunft dieser vielversprechenden Technologie im urologischen Kontext zu berichten.

Abstract

Isothermal microcalorimetry (IMC) is a nonspecific analytical tool for measurement of heat. With sensitivity in the order of 0.2 μW, IMC can detect very small amounts of heat produced by only a small number of microorganisms or eukaryotic cells. This report is intended to introduce IMC to the urological audience and to give an overview about the past, present and future of this cutting edge technology in the urological context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Baldoni D, Hermann H, Frei R et al (2009) Performance of microcalorimetry for early detection of methicillin resistance in clinical isolates of Staphylococcus aureus. J Clin Microbiol 47:774–776

    Article  PubMed  Google Scholar 

  2. Baldoni D, Steinhuber A, Zimmerli W, Trampuz A (2010) In vitro activity of gallium maltolate against Staphylococci in logarithmic, stationary, and biofilm growth phases: comparison of conventional and calorimetric susceptibility testing methods. Antimicrob Agents Chemother 54:157–163

    Article  PubMed  CAS  Google Scholar 

  3. Beezer AE, Bettelheim KA, Al-Salihi S, Shae EJ (1978) The enumeration of bacteria in culture media and clinical specimens of urine by microcalorimetry. Sci Tools 25:2510–2512

    Google Scholar 

  4. Beezer AE, Bettelheim KA, Newell RD, Stevens J (1974) The diagnosis of bacteriuria by flow microcalorimetry. Sci Tools 21:13–15

    Google Scholar 

  5. Bonkat G, Bachmann A, Solokhina A et al (2012) Growth of mycobacteria in urine determined by Isothermal microcalorimetry: implications for urogenital tuberculosis and other mycobacterial Infections. Urology 80(5):1163.e9–e12

    Article  PubMed  Google Scholar 

  6. Bonkat G, Braissant O, Rieken M et al (2012) Standardization of isothermal microcalorimetry in urinary tract infection detection by using artificial urine. World J Urol

  7. Bonkat G, Braissant O, Widmer AF et al (2012) Rapid detection of urinary tract pathogens using microcalorimetry: principle, technique and first results. BJU Int 110:892–897

    Article  PubMed  Google Scholar 

  8. Braissant O, Daniels AU (2011) Closed ampoule isothermal microcalorimetry for continous real-time detection and evaluation of cultured mammalian cell activity and responses. In: Stoddart MJ (Hrsg) Mammalian cell viability: methods and protocols. S 191–208

  9. Braissant O, Wirz D, Gopfert B, Daniels AU (2010) Biomedical use of isothermal microcalorimeters. Sensors (Basel) 10:9369–9383

  10. Braissant O, Wirz D, Gopfert B, Daniels AU (2010) Use of isothermal microcalorimetry to monitor microbial activities. FEMS Microbiol Lett 303:1–8

    Article  PubMed  CAS  Google Scholar 

  11. Braissant O, Wirz D, Gopfert B, Daniels AU (2010) Use of isothermal microcalorimetry to monitor microbial activities. FEMS Microbiol Lett 303:1–8

    Article  PubMed  CAS  Google Scholar 

  12. Brooks T, Keevil CW (1997) A simple artificial urine for the growth of urinary pathogens. Lett Appl Microbiol 24:203–206

    Article  PubMed  CAS  Google Scholar 

  13. Buchholz F, Wolf A, Lerchner J et al (2010) Chip calorimetry for fast and reliable evaluation of bactericidal and bacteriostatic treatments of biofilms. Antimicrob Agents Chemother 54:312–319

    Article  PubMed  CAS  Google Scholar 

  14. Figueiredo AA, Lucon AM, Junior RF, Srougi M (2008) Epidemiology of urogenital tuberculosis worldwide. Int J Urol 15:827–832

    Article  PubMed  Google Scholar 

  15. Furustrand U, Maiolo E, Hauser JB, Trampuz A (2011) Real-time antifungal susceptibility testing of Mucor spp., Fusarium spp. and Scedosporium spp. by isothermal microcalorimetry. Mycoses 54:168

    Article  Google Scholar 

  16. Furustrand TU, Clauss M, Hauser PM et al (2012) Isothermal microcalorimetry: a novel method for real-time determination of antifungal susceptibility of Aspergillus species. Clin Microbiol Infect 18:E241–E245

    Article  Google Scholar 

  17. Hemmiger W (1986) Entwicklung und Stand der Kalorimetrie. Physik in unserer Zeit 17:11–17

    Google Scholar 

  18. Kallerhoff M, Karnebogen M, Singer D et al (1996) Microcalorimetric measurements carried out on isolated tumorous and nontumorous tissue samples from organs in the urogenital tract in comparison to histological and impulse-cytophotometric investigations. Urol Res 24:83–91

    Article  PubMed  CAS  Google Scholar 

  19. Karnebogen M, Singer D, Kallerhoff M, Ringert RH (1993) Microcalorimetric investigations on isolated tumorous and non-tumorous tissue samples. Thermochim Acta 229:147

    Article  Google Scholar 

  20. Lavoisier A, Laplace PS (1780) Mèmoire sur la chaleur. Mémoires de l’Académie des Sciences 355–408

  21. Maiolo E, Furustrand U, Sanglard D, Trampuz A (2011) Microcalorimetric analysis of antifungal activity on planctonic and biofilm Candida spp. Mycoses 54:171–172

    Google Scholar 

  22. Sauer S, Kliem M (2010) Mass spectrometry tools for the classification and identification of bacteria. Nat Rev Microbiol 8:74–82

    Article  PubMed  CAS  Google Scholar 

  23. Segal R, Yafi FA, Brimo F et al (2012) Prognostic factors and outcome in patients with T1 high-grade bladder cancer: can we identify patients for early cystectomy? BJU Int 109:1026–1030

    Article  PubMed  Google Scholar 

  24. Herwaarden S van (2000) Calorimetry measurement. Mechanical variables measurement, solid, fluid, and thermal, S 17-1-17-16

  25. Wadsö I (1997) Trends in isothermal microcalorimetry. Chem Soc Rev 26:79–86

    Article  Google Scholar 

  26. Wadsö I (2002) Isothermal microcalorimetry in applied biology. Thermochim Acta 394:305–311

    Article  Google Scholar 

  27. Wadsö I, Goldberg RN (2012) Standards in isothermal calorimetry. Pure Appl Chem 73:1625–1639

    Article  Google Scholar 

  28. Wadsö L, Smith AL, Shirazi H et al (2001) A versatile instrument for studying processes in physics, chemistry, and biology. J Chem Educ 78:1080–1086

    Article  Google Scholar 

  29. Wadsö L, Gomez GF (2009) Isothermal calorimetry for biological applications in food science and technology. Food Control 20:956–961

    Article  Google Scholar 

  30. Wenzler T, Steinhuber A, Wittlin S et al (2012) Isothermal microcalorimetry, a new tool to monitor drug action against Trypanosoma brucei and Plasmodium falciparum. PLoS Negl Trop Dis 6:e1668

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Bonkat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonkat, G., Wirz, D., Rieken, M. et al. Anwendungsbereiche der isothermalen Mikrokalorimetrie in der Urologie. Urologe 52, 1092–1096 (2013). https://doi.org/10.1007/s00120-013-3169-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00120-013-3169-6

Schlüsselwörter

Keywords

Navigation