Skip to main content
Log in

Funktionelle Bildgebung beim Harnblasenkarzinom

Functional imaging in bladder cancer

Der Urologe Aims and scope Submit manuscript

Zusammenfassung

Die Computertomographie (CT) stellt die aktuelle präoperative Standardbildgebung beim muskelinvasiven Harnblasenkarzinom dar. Allerdings weist sie Schwächen hinsichtlich des lokalen Tumor- und Lymphknotenstagings auf. Die Magnetresonanztomographie (MRT) mit Spezialsequenzen [diffusionsgewichtete MRT, Messung des ADC-Wertes („apparent diffusion coefficient“)] oder der Einsatz von supraparamagnetischen Eisennanopartikeln bieten evtl. Vorteile in der Beurteilung des Lokalbefunds sowie der Lymphknoten und könnten zukünftig im Staging beim Blasenkarzinom eine größere Rolle spielen. Ebenso wird die Positronenemissionstomographie (PET) mit den Tracern 18F-FDG, 11C-Cholin und 11C-Acetat und meist fusioniert mit einer diagnostischen CT zum Staging des Blasenkarzinoms evaluiert. Obwohl für diese PET/CT-Untersuchungen z. T. vielversprechende Ergebnisse beschrieben wurden, kann deren Wertigkeit aktuell noch nicht abschließend beurteilt werden.

Abstract

Computed tomography (CT) represents the current standard imaging modality in muscle invasive bladder cancer; however, local tumor and lymph node staging is often impaired. Magnetic resonance imaging (MRI) with diffusion-weighted sequences, determination of apparent diffusion coefficient (ADC) values or utilization of supraparamagnetic iron nanoparticles potentially exhibits advantages in the assessment of local tumor and lymph node involvement and therefore might play a role in the staging of bladder tumor in the future. Likewise, positron emission tomography (PET) with the currently used tracers 18F fluorodeoxyglucose (18F-FDG), 11C-choline and 11C-acetate is being investigated in bladder cancer patients, mostly in combination with diagnostic CT. Although promising results could be obtained for PET/CT investigations to some extent, the true value cannot be determined at present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3

Abbreviations

CT:

Computertomographie

MRT:

Magnetresonanztomographie

PET:

Positronenemissionstomographie

FDG:

Fluordesoxyglukose

Literatur

  1. Anjos DA, Etchebehere EC, Ramos CD et al (2007) 18F-FDG PET/CT delayed images after diuretic for restaging invasive bladder cancer. J Nucl Med 48:764–770

    Article  PubMed  Google Scholar 

  2. Apolo AB, Riches J, Schoder H et al (2010) Clinical value of fluorine-18 2-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography in bladder cancer. J Clin Oncol 28:3973–3978

    Article  PubMed  Google Scholar 

  3. Belakhlef S, Church C, Jani C et al (2012) Early dynamic PET/CT and 18F-FDG blood flow imaging in bladder cancer detection: a novel approach. Clin Nucl Med 37:366–368

    Article  PubMed  Google Scholar 

  4. Daggulli M, Onur MR, Firdolas F et al (2011) Role of diffusion MRI and apparent diffusion coefficient measurement in the diagnosis, staging and pathological classification of bladder tumors. Urol Int 87:346–352

    Article  PubMed  Google Scholar 

  5. Daneshmand S, Ahmadi H, Huynh LN et al (2012) Preoperative staging of invasive bladder cancer with dynamic gadolinium-enhanced magnetic resonance imaging: results from a prospective study. Urology 80(6):1313–1318

    Article  PubMed  Google Scholar 

  6. Deserno WM, Harisinghani MG, Taupitz M et al (2004) Urinary bladder cancer: preoperative nodal staging with ferumoxtran-10-enhanced MR imaging. Radiology 233:449–456

    Article  PubMed  Google Scholar 

  7. Drzezga A, Souvatzoglou M, Eiber M et al (2012) First clinical experience with integrated whole-body PET/MR: comparison to PET/CT in patients with oncologic diagnoses. J Nucl Med 53:845–855

    Article  PubMed  Google Scholar 

  8. Froehlich JM, Triantafyllou M, Fleischmann A et al (2012) Does quantification of USPIO uptake-related signal loss allow differentiation of benign and malignant normal-sized pelvic lymph nodes? Contrast Media Mol Imaging 7:346–355

    Article  PubMed  CAS  Google Scholar 

  9. Gofrit ON, Mishani E, Orevi M et al (2006) Contribution of 11C-choline positron emission tomography/computerized tomography to preoperative staging of advanced transitional cell carcinoma. J Urol 176:940–944

    Article  PubMed  Google Scholar 

  10. Golan S, Sopov V, Baniel J et al (2011) Comparison of 11C-choline with 18F-FDG in positron emission tomography/computerized tomography for staging urothelial carcinoma: a prospective study. J Urol 186:436–441

    Article  PubMed  Google Scholar 

  11. Green DA, Durand M, Gumpeni N et al (2012) Role of magnetic resonance imaging in bladder cancer: current status and emerging techniques. BJU Int 110:1463–1470

    Article  PubMed  Google Scholar 

  12. Jadvar H, Quan V, Henderson RW et al (2008) [F-18]-Fluorodeoxyglucose PET and PET-CT in diagnostic imaging evaluation of locally recurrent and metastatic bladder transitional cell carcinoma. Int J Clin Oncol 13:42–47

    Article  PubMed  Google Scholar 

  13. Jensen TK, Holt P, Gerke O et al (2011) Preoperative lymph-node staging of invasive urothelial bladder cancer with 18F-fluorodeoxyglucose positron emission tomography/computed axial tomography and magnetic resonance imaging: correlation with histopathology. Scand J Urol Nephrol 45:122–128

    Article  PubMed  Google Scholar 

  14. Kibel AS, Dehdashti F, Katz MD et al (2009) Prospective study of [18F]fluorodeoxyglucose positron emission tomography/computed tomography for staging of muscle-invasive bladder carcinoma. J Clin Oncol 27:4314–4320

    Article  PubMed  Google Scholar 

  15. Kobayashi S, Koga F, Yoshida S et al (2011) Diagnostic performance of diffusion-weighted magnetic resonance imaging in bladder cancer: potential utility of apparent diffusion coefficient values as a biomarker to predict clinical aggressiveness. Eur Radiol 21:2178–2186

    Article  PubMed  Google Scholar 

  16. Liedberg F, Bendahl PO, Davidsson T et al (2012) Preoperative staging of locally advanced bladder cancer before radical cystectomy using 3 T magnetic resonance imaging with a standardized protocol. Scand J Urol Nephrol 89(4):483–485

    Google Scholar 

  17. Lodde M, Lacombe L, Friede J et al (2010) Evaluation of fluorodeoxyglucose positron-emission tomography with computed tomography for staging of urothelial carcinoma. BJU Int 106:658–663

    Article  PubMed  Google Scholar 

  18. Lu YY, Chen JH, Liang JA et al (2012) Clinical value of FDG PET or PET/CT in urinary bladder cancer: a systemic review and meta-analysis. Eur J Radiol 81:2411–2416

    Article  PubMed  Google Scholar 

  19. Maurer T, Souvatzoglou M, Kubler H et al (2012) Diagnostic efficacy of [11C]choline positron emission tomography/computed tomography compared with conventional computed tomography in lymph node staging of patients with bladder cancer prior to radical cystectomy. Eur Urol 61:1031–1038

    Article  PubMed  Google Scholar 

  20. Mertens LS, Bruin NM, Vegt E et al (2012) Catheter-assisted 18F-FDG-PET/CT imaging of primary bladder cancer: a prospective study. Nucl Med Commun 33:1195–1201

    Article  PubMed  Google Scholar 

  21. Nijjar S, Patterson J, Ducharme J et al (2010) The effect of furosemide dose timing on bladder activity in oncology imaging with 18F-fluorodeoxyglucose PET/CT. Nucl Med Commun 31:167–172

    Article  PubMed  CAS  Google Scholar 

  22. Orevi M, Klein M, Mishani E et al (2012) 11C-acetate PET/CT in bladder urothelial carcinoma: intraindividual comparison with 11C-choline. Clin Nucl Med 37:67–72

    Article  Google Scholar 

  23. Robert-Koch-Institut (2012) Krebs in Deutschland 2007/2008, 8. Ausgabe. RKI, Berlin

  24. Saokar A, Islam T, Jantsch M et al (2010) Detection of lymph nodes in pelvic malignancies with Computed Tomography and Magnetic Resonance Imaging. Clin Imaging 34:361–366

    Article  PubMed  Google Scholar 

  25. Schoder H, Ong SC, Reuter VE et al (2012) Initial results with (11)C-acetate positron emission tomography/computed tomography (PET/CT) in the staging of urinary bladder cancer. Mol Imaging Biol 14:245–251

    Article  PubMed  Google Scholar 

  26. Shariat SF, Ehdaie B, Rink M et al (2012) Clinical nodal staging scores for bladder cancer: a proposal for preoperative risk assessment. Eur Urol 61:237–242

    Article  PubMed  Google Scholar 

  27. Stenzl A, Cowan NC, De Santis M et al (2010) Update of the Clinical Guidelines of the European Association of Urology on muscle-invasive and metastatic bladder carcinoma. Actas Urol Esp 34:51–62

    Article  PubMed  CAS  Google Scholar 

  28. Swinnen G, Maes A, Pottel H et al (2010) FDG-PET/CT for the preoperative lymph node staging of invasive bladder cancer. Eur Urol 57:641–647

    Article  PubMed  Google Scholar 

  29. Triantafyllou M, Studer UE, Birkhauser FD et al (2012) Ultrasmall superparamagnetic particles of iron oxide allow for the detection of metastases in normal sized pelvic lymph nodes of patients with bladder and/or prostate cancer. Eur J Cancer 61(2):326–340

    Google Scholar 

  30. Vargas HA, Akin O, Schoder H et al (2012) Prospective evaluation of MRI, (11)C-acetate PET/CT and contrast-enhanced CT for staging of bladder cancer. Eur J Radiol 81(12):4131–4137

    Article  PubMed  CAS  Google Scholar 

  31. Vicente AM, Castrejon AS, Munoz AP et al (2010) Impact of 18F-FDG PET/CT with retrograde filling of the urinary bladder in patients with suspected pelvic malignancies. J Nucl Med Technol 38:128–137

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt für sich und seine Koautoren an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Maurer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maurer, T., Horn, T., Beer, A. et al. Funktionelle Bildgebung beim Harnblasenkarzinom. Urologe 52, 509–514 (2013). https://doi.org/10.1007/s00120-012-3097-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00120-012-3097-x

Schlüsselwörter

Keywords

Navigation