Skip to main content
Log in

Neue Punktionstechniken in der Urologie mittels 3D-gestützter Bildgebung

New puncture techniques in urology using 3D-assisted imaging

  • Leitthema
  • Published:
Der Urologe Aims and scope Submit manuscript

Zusammenfassung

Der gezielte Einsatz verschiedener Punktionstechniken in diagnostischer oder therapeutischer Absicht ist Bestandteil der alltäglichen Arbeit eines Urologen. Das Ziel dieser Interventionen ist immer eine sichere und zügige Punktion des jeweiligen Zielpunktes. Heutzutage finden zunehmend bildgebende Systeme Einsatz in der Urologie, die durch die Anwendung von dreidimensionaler (3D-)Darstellungen die Planung und Durchführung von Punktionen durch eine höhere Zielgenauigkeit sicherer und exakter machen sollen. Ein Lösungsansatz zur Erfüllung dieses Wunsches ist die Fusion von 3D-Rekonstruktionen aus MRT- oder CT-Untersuchungen mit bildgebenden Verfahren mit Echtzeitdarstellung wie der Sonographie oder der Durchleuchtung.

Abstract

The selective use of various puncture techniques for diagnostic or therapeutic purposes is a component of the daily routine of urologists. The aim of these interventions is always a safe and rapid puncture at the appropriate target point. Nowadays, imaging systems are increasingly being used in urology with the aim to achieve a more precise and safer planning and execution of punctures through an increased accuracy by the use of 3D representation. An approach to the solution to achieve this aim is the fusion of 3D reconstruction by magnetic resonance imaging (MRI) or computed tomography< (CT) with real-time imaging procedures, such as sonography or fluoroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Sehgal CM, Broderick GA, Whittington R et al (1994) Three-dimensional US and volumetric assessment of the prostate. Radiology 192:274–278

    PubMed  CAS  Google Scholar 

  2. Kuru TH, Roethke M, Popeneciu V et al (2012) Phantom study of a novel stereotactic prostate biopsy system integrating preinterventional magnetic resonance imaging and live ultrasonography fusion. J Endourol 26:807–813

    Article  PubMed  Google Scholar 

  3. Wacker FK, Nour SG, Eisenberg R et al (2004) MRI-guided radiofrequency thermal ablation of normal lung tissue: in vivo study in a rabbit model. Am J Roentgenol 183:599–603

    Google Scholar 

  4. LeMaitre L, Mestdagh P, Marecaux-Delomez J et al (2000) Percutaneous nephrostomy: placement under laser guidance and real-time CT fluoroscopy. Eur Radiol 10:892–895

    Article  PubMed  CAS  Google Scholar 

  5. Jung EM, Friedrich C, Hoffstetter P et al (2012) Volume navigation with contrast enhanced ultrasound and image fusion for percutaneous interventions: first results. PLoS One 7:33956

    Article  Google Scholar 

  6. Jacobi V, Thalhammer A, Kirchner J (1999) Value of a laser guidance system for CT interventions: a phantom study. Eur Radiol 9:137–140

    Article  PubMed  CAS  Google Scholar 

  7. Brabrand K, Aalokken TM, Krombach GA et al (2004) Multicenter evaluation of a new laser guidance system for computed tomography intervention. Acta Radiol 45:308–312

    Article  PubMed  CAS  Google Scholar 

  8. Schulz B, Eichler K, Siebenhandl P et al (2012) Accuracy and speed of robotic assisted needle interventions using a modern cone beam computed tomography intervention suite: a phantom study. Eur Radiol 122(10):2300–2303, doi: 10.1007/s00330-012-2585-0

    Google Scholar 

  9. Ritter M, Rassweiler MC, Hacker A et al (2012) Laser-guided percutaneous kidney access with the Uro Dyna-CT: first experience of three-dimensional puncture planning with an ex vivo model. World J Urol (Epub ahead of print), doi: 10.1007/s00345-012-0847-8

  10. Rassweiler JJ, Muller M, Fangerau M et al (2012) iPad-assisted percutaneous access to the kidney using marker-based navigation: initial clinical experience. Eur Urol 61:628–631

    Article  PubMed  Google Scholar 

  11. Pollock R, Mozer P, Guzzo TJ et al (2010) Prospects in percutaneous ablative targeting: comparison of a computer-assisted navigation system and the AcuBot Robotic System. J Endourol 24:1269–1272

    Article  PubMed  Google Scholar 

  12. Su LM, Stoianovici D, Jarrett TW et al (2002) Robotic percutaneous access to the kidney: comparison with standard manual access. J Endourol 16:471–475

    Article  PubMed  Google Scholar 

  13. Michel MS, Ritter M, Schonberg S et al (2012) The urological Dyna-CT: Urological cross-sectional imaging on a newly developed urological intervention table. Urologe A 51(6):857–861, doi: 10.1007/s00120-012-2837-2

    Article  PubMed  CAS  Google Scholar 

  14. Ritter M, Weiss C, Rassweiler MC et al (2012) Optimizing imaging quality in endourology with the Uro Dyna-CT: contrast agent dilution matters. World J Urol 26(1):47–51, doi: 10.1007/s00345-012-0903-4

    Google Scholar 

  15. Kroeze SG, Huisman M, Verkooijen HM et al (2011) Real-time 3D fluoroscopy-guided large core needle biopsy of renal masses: a critical early evaluation according to the IDEAL recommendations. Cardiovasc Intervent Radiol 35(3):680–685, doi: 10.1007/s00270-011-0237-4

    Article  PubMed  Google Scholar 

  16. Braak SJ, Strijen MJ van, Leersum M van et al (2010) Real-Time 3D fluoroscopy guidance during needle interventions: technique, accuracy, and feasibility. Am J Roentgenol 194:445–451

    Article  Google Scholar 

  17. Mandal S, Goel A, Gupta DK et al (2012) iPad-assisted percutaneous access to the kidney using marker-based navigation: initial clinical experience. Eur Urol 61:628–631

    Article  Google Scholar 

  18. Heidenreich A, Bellmunt J, Bolla M et al (2011) EAU guidelines on prostate cancer. Part I: screening, diagnosis, and treatment of clinically localised disease. Actas Urol Esp 35:501–514

    Article  PubMed  CAS  Google Scholar 

  19. Smeenge M, Rosette JJ de la, Wijkstra H (2012) Current status of transrectal ultrasound techniques in prostate cancer. Curr Opin Urol 22:297–302

    Article  PubMed  Google Scholar 

  20. Ukimura O, Hung AJ, Gill IS (2011) Innovations in prostate biopsy strategies for active surveillance and focal therapy. Curr Opin Urol 21:115–120

    Article  PubMed  Google Scholar 

  21. Ukimura O, Desai MM, Palmer S et al (2012) 3-Dimensional elastic registration system of prostate biopsy location by real-time 3-dimensional transrectal ultrasound guidance with magnetic resonance/transrectal ultrasound image fusion. J Urol 187:1080–1086

    Article  PubMed  Google Scholar 

  22. Braeckman J, Autier P, Garbar C et al (2008) Computer-aided ultrasonography (HistoScanning): a novel technology for locating and characterizing prostate cancer. BJU Int 101:293–298

    Article  PubMed  Google Scholar 

  23. Loch T (2004) Computerized supported transrectal ultrasound (C-TRUS) in the diagnosis of prostate cancer. Urologe A 43:1377–1384

    Article  PubMed  CAS  Google Scholar 

  24. Krouskop TA, Wheeler TM, Kallel F et al (1998) Elastic moduli of breast and prostate tissues under compression. Ultrason Imag 20:260–274

    CAS  Google Scholar 

  25. Kuru TH, Tulea C, Simpfendorfer T et al (2012) MRI navigated stereotactic prostate biopsy: fusion of MRI and real-time transrectal ultrasound images for perineal prostate biopsies. Urologe A 51:50–56

    Article  PubMed  CAS  Google Scholar 

  26. Elliot TL, Downey DB, Tong S et al (1996) Accuracy of prostate volume measurements in vitro using three-dimensional ultrasound. Acad Radiol 3:401–406

    Article  PubMed  CAS  Google Scholar 

  27. Tong S, Downey DB, Cardinal HN et al (1996) A three-dimensional ultrasound prostate imaging system. Ultrasound Med Biol 22:735–746

    Article  PubMed  CAS  Google Scholar 

  28. Shen F, Shinohara K, Kumar D et al (2008) Three-dimensional sonography with needle tracking: role in diagnosis and treatment of prostate cancer. J Ultrasound Med 27:895–905

    PubMed  Google Scholar 

  29. Verma S, Turkbey B, Muradyan N et al (2012) Overview of dynamic contrast-enhanced MRI in prostate cancer diagnosis and management. Am J Roentgenol 198:1277–1288

    Article  Google Scholar 

  30. Fei B, Schuster DM, Master V et al (2012) A molecular image-directed, 3D ultrasound-guided biopsy system for the prostate. SPIE Proceedings 831613, doi:10.1117/12.912182

  31. Schuster DM, Votaw JR, Nieh PT et al (2007) Initial experience with the radiotracer anti-1-amino-3-18 F-fluorocyclobutane-1-carboxylic acid with PET/CT in prostate carcinoma. J Nucl Med 48:56–63

    PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt für sich und seine Koautoren an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ritter.

Additional information

M. Ritter und M.-C. Rassweiler haben die gleichberechtigte Erstautorenschaft.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ritter, M., Rassweiler, MC., Rassweiler, J. et al. Neue Punktionstechniken in der Urologie mittels 3D-gestützter Bildgebung. Urologe 51, 1703–1707 (2012). https://doi.org/10.1007/s00120-012-3051-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00120-012-3051-y

Schlüsselwörter

Keywords

Navigation