Skip to main content
Log in

Die Lokaltherapie des Prostatakarzinoms mit thermisch ablativer Energie

Local treatment of prostate cancer using thermal-ablative energy

  • Leitthema
  • Published:
Der Urologe Aims and scope Submit manuscript

Zusammenfassung

Thermische und thermisch ablative Verfahren für die Therapie des Prostatakarzinoms werden – abgesehen von historischen Vorläufern – seit ca. 1980 systematisch untersucht, es wurden zahlreiche experimentelle und klinische Arbeiten publiziert. Dabei kamen verschiedene Techniken zur Anwendung, neben der transurethralen Ablation des Prostatagewebes mit Laser- oder Mikrowellenenergie liegt der Fokus in der interstitiellen Applikation von Laser- oder Mikrowellenstrahlung sowie der induktiven Erwärmung des Gewebes im Magnetfeld nach vorheriger Implantation magnetischer Seeds oder Nanopartikel.

Mit allen genannten Verfahren wurden erste klinische Studien mit insgesamt ca. 350 Patienten behandelt, deren Ergebnisse mangels adäquater Kontrollparameter der älteren Studien und der zu kurzen Nachbeobachtungszeit aller Studien nicht beurteilt werden können. Aussagen zur therapiebedingten Morbidität scheinen möglich und sind durchweg positiv bei geringen Raten schwerwiegender unerwünschter Ereignisse, doch muss hier vor einer Verallgemeinerung die Patientenauswahl berücksichtigt werden, weiterhin der Stand der Technologie zur Zeit der jeweiligen Studien.

Die verschiedenen Publikationen werden ausführlich referiert und zusammenfassend bewertet. Nach Meinung des Autors sind die Ansätze der thermischen und thermisch ablativen Therapie des Prostatakarzinoms interessant, in Anbetracht der vorhandenen Alternativen darf die Machbarkeit jedoch nicht die Sinnhaftigkeit ersetzen.

Abstract

Thermal and thermal-ablative procedures for treating prostate cancer have been investigated systematically since approximately 1980 (apart from some historical predecessors), and numerous experimental and clinical reports have been published on this subject. Various technologies have been used, including transurethral ablation of prostatic tissue using laser or microwave energy, interstitial application of laser or microwave energy, and inductive heating of previously implanted thermoseeds or injected magnetic nanoparticles in a magnetic field.

For all of these procedures, clinical studies with a total of some 350 patients have been performed. However, the results cannot be judged correctly because of a lack of adequate control parameters for the older studies and inadequately short follow-up of all studies. Conclusions regarding treatment-related morbidity seem to be possible, with a generally positive impression and low rates of adverse effects. But before such results can be generalized, patient selection bias and the technology standards that existed when the studies were performed must be taken into consideration.

Various papers are reviewed and summarized. In the author’s opinion, the different options for thermal and thermal-ablative treatment of prostate cancer are very promising, but in light of the existing standard procedures, feasibility must not overrule reasonableness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Costello AJ, Johnson DE (1991) Laser ablation of the prostate as a treatment for benign prostatic hypertrophy. J Endourol 5(Suppl 1): 128

    Google Scholar 

  2. Hofstetter A (1991) Interstitielle Thermokoagulation (ITK) von Prostatatumoren. Lasermedizin 7: 179

    Google Scholar 

  3. Johnson DE, Costello AJ, Wishnow KI (1991) Transurethral laser prostatectomy using a right angle laser delivery system. Lasers Surg Med 3(Suppl): 76

    Google Scholar 

  4. Johnson DE, Levinson AK, Greskovich FJ et al (1991) Transurethral laser prostatectomy using a right-angle laser-delivery system. In: Watson GM, Steiner RW, Pietrafitta JJ (eds) Lasers in Urology, Laparoscopy and General Surgery. SPIE Proc 1421: 36–41

    Article  Google Scholar 

  5. Muschter R, Hofstetter A, Hessel S et al (1992) Hi-Tech of the prostate: Interstitial laser coagulation of benign prostatic hypertrophy. In: Anderson RR (ed) Laser surgery: Advanced characterization, Therapeutics and Systems III. SPIE Proc 1643: 25–34

    Article  Google Scholar 

  6. Roth RA, Aretz HT, Lage AL (1990) TULIP: Transurethral laser induced prostatectomy under ultrasound guidance. J Urol A 143(Suppl): 285

    Google Scholar 

  7. Watson GM, Anson K (1992) Early experience with lasers for prostatic outflow obstruction. J Endourol 6(Suppl): 141

    Google Scholar 

  8. Daughtry JD, Rodan BA (1993) Transurethral laser prostatectomy: A comparison of contact tip mode and lateral firing free beam mode. J Clin Laser Med Surg 11: 21–28

    PubMed  CAS  Google Scholar 

  9. McPhee MS (1986) Lasers in the treatment of cancer of the prostate. An overview. Biomed Pharmacother 40: 321–322

    PubMed  CAS  Google Scholar 

  10. McPhee MS (1989) Prostate. In: Smith JA Jr, Stein BS, Benson RC Jr (eds) Lasers in urologic surgery, 2nd edn. Year Book Medical Publishers Inc, Chicago, pp 41–49

  11. Hall RR (1982) Lasers in urological cancer surgery. Int Adv Surg Oncol 5: 359–363

    PubMed  CAS  Google Scholar 

  12. Böwering R, Hofstetter A, Keiditsch E, Frank F (1979) Irradiation of prostatic carcinoma by Neodymium-YAG-Laser. In: Optics and photonics applied to medicine. SPIE Proc 211: 16–20

    Google Scholar 

  13. Böwering R, Hofstetter A, Weinberg W et al (1979) Irradiation of prostatic carcinoma by Neodymium-YAG-Laser. In: Kaplan I, Ascher PW (eds) Part II Lasers apart from the CO2 Laser. Laser surgery III, Proceedings of the 3rd international congress for laser surgery, Graz, pp 163–173

  14. Böwering R, Weinberg W, Keiditsch E et al (1980) Experimental investigations of the effect of Nd - YAG laser irradiation on prostatic tissue. Urol Res 8: 227

    Google Scholar 

  15. Finkelstein LH, Frantz B, Hynes Longendorfer L et al (1985) Electroresection followed by neodymium-YAG laser photocoagulation of the dog prostate for establishment of safety parameters. Lasers Surg Med 5: 529–533

    Article  PubMed  CAS  Google Scholar 

  16. Schoeneich G, Vahlensieck W, Miersch WD, Winter W (1992) Laser treatment of prostatic carcinoma - preliminary results. Onkologie 15: 390–392

    Article  Google Scholar 

  17. Vahlensieck W, Schoeneich G, Vogel J (1990) Adjuvante transurethrale Laserbehandlung des Prostatakarzinoms mit dem 70° Umlenkprisma. Urologe B 30: 231–234

    Google Scholar 

  18. Beisland HO (1986) Neodymium-YAG laser in the treatment of urinary bladder and localized prostatic carcinoma. J Oslo City Hosp 36: 63–84

    PubMed  CAS  Google Scholar 

  19. Beisland HO (1988) Combined TUR and laser in the treatment of localized prostatic cancer. Scand J Urol Nephrol 110(Suppl): 83–88

    CAS  Google Scholar 

  20. Beisland HO (1990) Laserbehandlung des lokalisierten Prostatakarzinoms. In: Staehler G, Fabricius PG (Hrsg) Das Prostatakarzinom. Diagnostik und Therapie. Springer, Berlin Heidelberg, S 97–101

  21. Beisland HO, Lærum F (1986) Transrectal ultrasonography before and after neodymium-YAG laser irradiation of localized prostatic carcinoma. Eur Urol 12(Suppl 1): 39–42

    PubMed  Google Scholar 

  22. Beisland HO, Sander S (1986) First clinical experiences on neodymium-YAG laser irradiation of localized prostatic cancer. Scand J Urol Nephrol 20: 113–117

    Article  PubMed  CAS  Google Scholar 

  23. Beisland HO, Sander S (1986) Experience with the treatment of localized prostatic carcinoma using the neodymium-YAG laser. Eur Urol 12(Suppl 1): 37–38

    Google Scholar 

  24. Beisland HO, Sander S (1991) Localized prostate carcinoma treated with TUR and neodymium-YAG laser irradiation. Scand J Urol Nephrol 138(Suppl): 117–119

    CAS  Google Scholar 

  25. Beisland HO, Stranden E (1984) Rectal temperature monitoring during neodymion-YAG laser irradiation for prostatic carcinoma. Urol Res 12: 257–259

    Article  PubMed  CAS  Google Scholar 

  26. Childs SJ (1993) Extended Transurethral Resection and Nd:YAG Laser Ablation of the Prostate (TURLAP) for Carcinoma: A pilot study. In: Daly CJ, Grundfest WS, Johnson DE et al (eds) Lasers in urology, Gynecology and General surgery. SPIE Proc 1879: 94–102

    Article  Google Scholar 

  27. Gaboardi F, Bozzola A, Zago T, Galli L (1993) Early prostatic cancer treated by Nd:YAG Laser. In: Daly CJ, Grundfest WS, Johnson DE et al (eds) Lasers in urology, Gynecology and General surgery. SPIE Proc 1879: 88–93

    Article  Google Scholar 

  28. McNicholas TA (1990) Laser treatment of urological tumours 2: Carcinoma of the prostate and penis. In: McNicholas TA (ed) Lasers in urology: Principles and practice, Springer, Berlin Heidelberg New York, pp 63–82

  29. McNicholas TA, Carter SSC, Wickham JEA, O’Donoghue EPN (1988) YAG laser treatment of early carcinoma of the prostate. Br J Urol 61: 239–243

    Article  PubMed  CAS  Google Scholar 

  30. McNicholas T, O’Donoghue N (1991) Endoscopic YAG laser coagulation for early prostate cancer. In: Watson GM, Steiner RW, Pietrafitta JJ (eds) Lasers in urology, Laparoscopy and General surgery. SPIE Proc 1421: 56–67

    Article  Google Scholar 

  31. McNicholas TA, O’Donoghue NE (1992) Endoscopic laser coagulation for early stage prostate cancer. J Urol 147(Suppl): 304

    Google Scholar 

  32. McNicholas TA, Ramsay JWA, Carter SStC, Miller RA (1988) Suprapubic endoscopy: A percutaneous approach. Br J Urol 61: 221–223

    Article  PubMed  CAS  Google Scholar 

  33. Samdal F, Brevik B (1990) Laser combined with TURP in the treatment of localized prostatic cancer. Scand J Urol Nephrol 24: 175–177

    PubMed  CAS  Google Scholar 

  34. Sander S, Beisland HO (1984) Laser in the treatment of localized prostatic carcinoma. J Urol 132: 280–281

    PubMed  CAS  Google Scholar 

  35. Sander S, Beisland HO (1990) Laser in the treatment of localized prostatic carcinoma. In: Whitehead ED (ed) Current operative urology. Lippincott, Philadelphia, pp 362–364

  36. Sander S, Beisland HO, Fossberg E (1982) Neodymion YAG laser in the treatment of prostatic cancer. Urol Res 10: 85–86

    Article  PubMed  CAS  Google Scholar 

  37. Schoeneich G, Vahlensieck W, Miersch WD, Vogel J (1992) Endoskopische Laserkoagulation des Prostatakarzinoms. In: Merkle W, Haupt G (Hrsg) Moderne Methoden der Sonographie und Lasertherapie in der Urologie. Biermann, Zülpich, S 201–203

  38. Charig C, McNicholas T, Carter SStC, O’Donoghue EPN (1988) Laser coagulation of localized prostate cancer: ultrasound changes following endoscopic laser therapy. Lasers Med Sci 3: 435

    Google Scholar 

  39. Krampe C (1989) 70°-Umlenkprisma. Indikationserweiterung für die urologische Nd:YAG-Lasertherapie. Laser Brief 16 (Hrsg) MBB Medizintechnik GmbH, Ottobrunn

    Google Scholar 

  40. Sayer J, Cromeens DM, Price RE, Johnson DE (1993) Complete prostatic ablation using a two-stage laser. In: Daly CJ, Grundfest WS, Johnson DE et al (eds) Lasers in urology, Gynecology and General surgery. SPIE Proc 1879: 103–105

    Article  Google Scholar 

  41. Hofstetter A (1992) Kritische Beurteilung der Laseranwendung bei Prostata- und Peniskarzinomen. In: Merkle W, Haupt G (Hrsg) Moderne Methoden der Sonographie und Lasertherapie in der Urologie. Biermann, Zülpich, S 178–181

  42. Littrup PJ, Lee F, Borlaza GS et al (1988) Percutaneous ablation of canine prostate using transrectal ultrasound guidance. Invest Radiol 23: 734–739

    Article  PubMed  CAS  Google Scholar 

  43. Littrup PJ, Sacknoff EJ, Lee F et al (1988) Comparison of Nd:YAG laser and absolute ethanol in the percutaneous ablation of canine prostate. Laser Med Surg News Adv 26(2): 21–25

    Google Scholar 

  44. McNicholas TA, Charig C, Steger AC, Bown SG (1988) Interstitial laser coagulation of the prostate: An experimental study. Lasers Med Sci 3: 446

    Google Scholar 

  45. Steger AC, McNicholas TA (1990) Interstitial hyperthermia of the prostate. In: McNicholas TA (ed) Lasers in urology: Principles and practice. Springer, Berlin Heidelberg New York, pp 141–149

  46. McNicholas TA, Pope AJ, Timoney A et al (1992) Interstitial laser coagulation of the prostate: Experimental and clinical studies. J Urol 147(Suppl): 210

    Google Scholar 

  47. McNicholas TA, Pope AJ, Timoney A et al (1992) Hyperthermia of the prostate by interstitial laser coagulation. J Urol 147(Suppl): 345

    Google Scholar 

  48. McNicholas TA, Lynch MJ, Parkinson MC, O’Donoghue NE (1992) Interstitial laser coagulation (ILC) of the prostate. J Endourol 6(Suppl): 137

    Article  Google Scholar 

  49. Muschter R (1994) Laser induced interstitial thermotherapy of benign prostatic hyperplasia and prostate cancer. In: Bown SG, Escourrou J, Frank F et al (eds) Medical applications of lasers II. SPIE Proc 2327: 287–292

    Article  Google Scholar 

  50. Muschter R, Hofstetter A (1995) Interstitial laser coagulation for local palliation of prostate cancer. J Urol 153: 240

    Google Scholar 

  51. Cavaliere R, Ciocatto EC, Giovanella BC et al (1967) Selective heat sensitivity of cancer cells. Cancer 20: 1351–1381

    Article  PubMed  CAS  Google Scholar 

  52. Issels RD, Wilmanns W (eds) (1988) Recent Results in Cancer Research, Vol 107: Application of hyperthermia in the treatment of cancer. Springer, Berlin Heidelberg New York

  53. Streffer C (ed) (1987) Recent Results in Cancer Research, Vol 104: Hyperthermia and the Therapy of Malignant Tumors. Springer, Berlin Heidelberg New York

  54. Milligan AJ (1984) Whole-body hyperthermia induction techniques. Cancer Res 44(Suppl): 4869–4872

    Google Scholar 

  55. Brezovich IA, Atkinson WJ, Lilly MB (1984) Local hyperthermia with interstitial techniques. Cancer Res 44(Suppl): 4752–4756

    Google Scholar 

  56. Cheung AY, Neyzari A (1984) Deep local hyperthermia for cancer therapy: external electromagnetic and ultrasound techniques. Cancer Res 44(Suppl): 4736–4744

    Google Scholar 

  57. Dunlop PRC, Hand JW, Dickinson RJ, Field SB (1986) An assessment of local hyperthermia in clinical practice. Int J Hyperthermia 2: 39–50

    PubMed  CAS  Google Scholar 

  58. ter Haar G, Hand JW (1981) Heating techniques in hyperthermia. III. Ultrasound. Br J Radiol 54: 459–466

    Google Scholar 

  59. Hand JW (1981) Heating techniques in hyperthermia. II. Non-ionizing electromagnetic waves. Br J Radiol 54: 446–459

    PubMed  CAS  Google Scholar 

  60. Hand JW, ter Haar G (1981) Heating techniques in hyperthermia. I. Introduction and assessment of techniques. Br J Radiol 54: 443–446

    Article  PubMed  CAS  Google Scholar 

  61. Linke CA, Carstensen EL, Frizzell LA et al (1973) Localized tissue destruction by high-intensity focused ultrasound. Arch Surg 107: 887–891

    PubMed  CAS  Google Scholar 

  62. Mechling JA, Strohbehn JW (1986) A theoretical comparison of the temperature distributions produced by three interstitial hyperthermia systems. Int J Radiat Oncol Biol Phys 12: 2137–2149

    PubMed  CAS  Google Scholar 

  63. Prior MV (1991) A comparative study of RF-LCF and hot-source interstitial hyperthermia techniques. Int J Hyperthermia 7: 131–140

    Article  PubMed  CAS  Google Scholar 

  64. Yerushalmi A, Fishelovitz Y, Singer D et al (1985) Localized deep microwave hyperthermia in the treatment of poor operative risk patients with benign prostatic hyperplasia. J Urol 133: 873–876

    PubMed  CAS  Google Scholar 

  65. McCaskey D (1921) Quartz light therapy in obstinate prostatic affections. NY Med J 113: 647–648

    Google Scholar 

  66. Webb JC, Mucklow SL (1931) Non-operative treatment of the senile prostate. Lancet 220: 957–960

    Google Scholar 

  67. Hibbs DK, Osborne SL (1941) Short wave diathermy in chronic prostatitis. Am J Med Sci 201: 547–533

    Article  Google Scholar 

  68. Hickman J, Herrick JF, Wakim KG, Schlotthauer CF (1951) The heating effects of short wave diathermy on the prostate of the dog. J Urol 65: 311–315

    PubMed  CAS  Google Scholar 

  69. Mendecki J, Friedenthal E, Botstein C et al (1980) Microwave applicators for localized hyperthermia treatment of cancer of the prostate. Int J Radiat Oncol Biol Phys 6: 1583–1588

    PubMed  CAS  Google Scholar 

  70. Petrowicz O, Scheiblich J, Crucius A et al (1982) High-frequency transmitter for the localized heat treatment of the prostate gland. J Natl Cancer Inst Monogr 61: 473–476

    Google Scholar 

  71. Yerushalmi A, Shpirer Z, Hod I et al (1982) Normal tissue response to localized deep microwave hyperthermia in the rabbit’s prostate: A preclinical study. Int J Radiat Oncol Biol Phys 9: 77–82

    Google Scholar 

  72. Servadio C, Leib Z (1984) Hyperthermia in the treatment of prostate cancer. Prostate 5: 205–211

    Article  PubMed  CAS  Google Scholar 

  73. Yerushalmi A, Servadio C, Leib Z et al (1982) Local hyperthermia for treatment of carcinoma of the prostate: A preliminary report. Prostate 3: 623–630

    Article  PubMed  CAS  Google Scholar 

  74. Leib Z, Rothem A, Lev A, Servadio C (1986) Histopathological observations in the canine prostate treated by local microwave hyperthermia. Prostate 8: 93–102

    Article  PubMed  CAS  Google Scholar 

  75. Leib Z, Servadio C, Lev A (1986) Diseases of the prostate treated by hyperthermia. J Urol 135(Suppl): 199

    Google Scholar 

  76. Servadio C, Leib Z, Lev A (1986) Further observations on the use of local hyperthermia for the treatment of diseases of the prostate in man. Eur Urol 12: 38–40

    PubMed  CAS  Google Scholar 

  77. Servadio C, Leib Z, Lev A (1987) Diseases of prostate treated by local microwave hyperthermia. Urology 30: 97–99

    Article  PubMed  CAS  Google Scholar 

  78. Magin RL, Fridd CW, Bonfiglio TA, Linke CA (1980) Thermal destruction of the canine prostate by high intensity microwaves. J Surg Res 29: 265–275

    Article  PubMed  CAS  Google Scholar 

  79. Harada T, Etori K, Kumazaki T et al (1985) Microwave surgical treatment of diseases of prostate. Urology 26: 572–576

    Article  PubMed  CAS  Google Scholar 

  80. Lancaster C, Toi A, Trachtenberg J (1999) Interstitial microwave thermoablation for localized prostate cancer. Urology 53: 828–831

    Article  PubMed  CAS  Google Scholar 

  81. Chen JC, Moriarty JA, Derbyshire JA et al (2000) Prostate cancer: MR imaging and thermometry during microwave thermal ablation-initial experience. Radiology 214: 290–297

    PubMed  CAS  Google Scholar 

  82. Sherar MD, Gladman AS, Davidson SR et al (2001) Helical antenna arrays for interstitial microwave thermal therapy for prostate cancer: tissue phantom testing and simulations for treatment. Phys Med Biol 46: 1905–1918

    Article  Google Scholar 

  83. Sherar MD, Gertner MR, Yue CK et al (2001) Interstitial microwave thermal therapy for prostate cancer: method of treatment and results of a phase I/II trial. J Urol 166: 1707–1714

    Article  PubMed  CAS  Google Scholar 

  84. Sherar MD, Trachtenberg J, Davidson SR et al (2003) Interstitial microwave thermal therapy for prostate cancer. J Endourol 17: 617–625

    Article  PubMed  Google Scholar 

  85. Sherar MD, Trachtenberg J, Davidson SR, Gertner MR (2004) Interstitial microwave thermal therapy and its application to the treatment of recurrent prostate cancer. Int J Hyperthermia 20: 757–768

    Article  PubMed  CAS  Google Scholar 

  86. Cheng HL, Haider MA, Dill-Macky MJ et al (2008) MRI and contrast-enhanced ultrasound monitoring of prostate microwave focal thermal therapy: an in vivo canine study. J Magn Reson Imaging 28: 136–143

    Article  PubMed  Google Scholar 

  87. Ren ZY, Tucker R, Landas S et al (1990) Regional hyperthermia combined with high energy shock wave treatment on dunning prostate tumors. J Lithotr Stone Dis 2: 211–219

    PubMed  CAS  Google Scholar 

  88. Tucker RD, Loening SA, Landas S et al (1991) The in vivo effect of regional hyperthermia on Dunning R3327 prostatic tumor. Prostate 18: 321–329

    Article  PubMed  CAS  Google Scholar 

  89. Tucker RD, Loening SA, Landas S et al (1992) The effect of interstitial hyperthermia on the Dunning prostate tumor model. J Urol 147: 1129–1133

    PubMed  CAS  Google Scholar 

  90. Paulus JA, Tucker RD, Flanagan SW et al (1993) Heat shock protein response in a prostate tumor model to interstitial thermotherapy: implications for clinical treatment. Prostate 23: 263–270

    Article  PubMed  CAS  Google Scholar 

  91. Ferguson SD, Paulus JA, Tucker RD et al (1993) Effect of thermal treatment on heating characteristics of Ni-Cu alloy for hyperthermia: preliminary studies. J Appl Biomater 4: 55–60

    Article  PubMed  CAS  Google Scholar 

  92. Paulus JA, Tucker RD, Loening SA, Flanagan SW (1997) Thermal ablation of canine prostate using interstitial temperature self-regulating seeds: new treatment for prostate cancer. J Endourol 11: 295–300

    Article  PubMed  CAS  Google Scholar 

  93. Roigas J, Wallen ES, Loening SA, Moseley PL (1998) Effects of combined treatment of chemotherapeutics and hyperthermia on survival and the regulation of heat shock proteins in Dunning R3327 prostate carcinoma cells. Prostate 34: 195–202

    Article  PubMed  CAS  Google Scholar 

  94. Deger S, Bohmer D, Turk I et al (2001) Thermoradiotherapie mit interstitiellen Thermoseeds bei der Behandlung des lokalen Prostatakarzinoms. Erste Ergebnisse einer Phase-II-Studie. Urologe A 40: 195–198

    Article  PubMed  CAS  Google Scholar 

  95. Deger S, Bohmer D, Roigas J et al (2002) Interstitial hyperthermia using thermoseeds in combination with conformal radiotherapy for localized prostate cancer. Front Radiat Ther Oncol 36: 171–176

    Article  PubMed  Google Scholar 

  96. Deger S, Boehmer D, Turk I, et al (2002) Interstitial hyperthermia using self-regulating thermoseeds combined with conformal radiation therapy. Eur Urol 42: 147–153

    Article  PubMed  Google Scholar 

  97. Deger S, Taymoorian K, Boehmer D et al (2004) Thermoradiotherapy using interstitial self-regulating thermoseeds: an intermediate analysis of a phase II trial. Eur Urol 45: 574–580

    Article  PubMed  Google Scholar 

  98. Johannsen M, Jordan A, Scholz R et al (2004) Evaluation of magnetic fluid hyperthermia in a standard rat model of prostate cancer. J Endourol 18: 495–500

    Article  PubMed  Google Scholar 

  99. Johannsen M, Gneveckow U, Eckelt L et al (2005) Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique. Int J Hyperthermia 21: 637–647

    Article  PubMed  CAS  Google Scholar 

  100. Johannsen M, Thiesen B, Jordan A et al (2005) Magnetic fluid hyperthermia (MFH) reduces prostate cancer growth in the orthotopic Dunning R3327 rat model. Prostate 64: 283–292

    Article  PubMed  Google Scholar 

  101. Johannsen M, Thiesen B, Gneveckow U et al (2006) Thermotherapy using magnetic nanoparticles combined with external radiation in an orthotopic rat model of prostate cancer. Prostate 66: 97–104

    Article  PubMed  CAS  Google Scholar 

  102. Johannsen M, Gneveckow U, Thiesen B et al (2007) Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging and three-dimensional temperature distribution. Eur Urol 52: 1653–1661

    Article  PubMed  Google Scholar 

  103. Johannsen M, Gneveckow U, Taymoorian K et al (2007) Termoterapia en cancer de prostata mediante el uso de nanoparticulas magneticas. Actas Urol Esp 31: 660–667

    Article  PubMed  Google Scholar 

  104. Johannsen M, Gneveckow U, Taymoorian K et al (2007) Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer: results of a prospective phase I trial. Int J Hyperthermia 23: 315–323

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Keine Angaben.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Muschter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muschter, R. Die Lokaltherapie des Prostatakarzinoms mit thermisch ablativer Energie. Urologe 48, 729–739 (2009). https://doi.org/10.1007/s00120-009-1983-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00120-009-1983-7

Schlüsselwörter

Keywords

Navigation