Skip to main content
Log in

Die Rolle des Androgenrezeptors im hormonrefraktären Prostatakarzinom

Molekulare Grundlagen und experimentelle Therapieansätze

Role of androgen receptors in hormone-refractory prostate cancer

Molecular basics and experimental therapy approaches

  • Übersichten
  • Published:
Der Urologe Aims and scope Submit manuscript

Zusammenfassung

Die Entstehung hormonrefraktärer Prostatakarzinomzellen während einer Hormonablationstherapie stellt die Hauptursache für den Tumorprogress und die hohe Mortalitätsrate des fortgeschrittenen Prostatakarzinoms (PCA) dar. Während in vitro der Verlust des Androgenrezeptors (AR) der vorherrschende Mechanismus für die Entwicklung einer Hormoninsensitivität ist, zeigen In-vivo-Untersuchungen, dass die Expression des AR in Zellen hormonrefraktärer PCA weitgehend erhalten bleibt oder sogar gesteigert ist. Die im Hinblick auf die in westlichen Industrienationen kontinuierlich steigende Anzahl an PCA durchgeführten molekularbiologischen bzw. zellbiologischen Untersuchungen führten zur Entdeckung einer Vielzahl neuer Faktoren/Mechanismen, die bei der Entstehung hormonrefraktärer PCA eine Rolle spielen. Diese Erkenntnisse sollten in weiterer Folge zu neuen Therapiekonzepten führen bzw. solche unterstützen.

Abstract

The development of hormone-refractory prostate cancer cells is one of the major causes for the progression and high mortality rates in advanced prostate cancer (PCA). While the loss of the androgen receptor (AR) is the predominant mechanism for development of a hormone-insensitive disease in vitro, the first in vivo studies showed that the AR is still expressed or is even overexpressed in hormone-refractory PCA. In view of the increasing cases of PCA in the industrialized Western countries, a series of cell and molecular biological studies has led to the identification of various new factors and mechanisms that play a role during the development of hormone-refractory tumors. These findings should lead to the development of new therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Hobisch A, Culig Z, Radmayr C et al. (1995) Distant metastases from prostatic carcinoma express androgen receptor protein. Cancer Res 55: 3068–3072

    PubMed  CAS  Google Scholar 

  2. Hobisch A, Culig Z, Radmayr C et al. (1996) Androgen receptor status of lymph node metastases from prostate cancer. Prostate 28: 129–135

    Article  PubMed  CAS  Google Scholar 

  3. Koivisto P, Kononen J, Palmberg C et al. (1997) Androgen receptor gene amplification: a possible molecular mechanism for androgen deprivation therapy failure in prostate cancer. Cancer Res 57: 314–319

    PubMed  CAS  Google Scholar 

  4. Visakorpi T, Hyytinen E, Koivisto P et al. (1995) In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nat Genet 9: 401–406

    Article  PubMed  CAS  Google Scholar 

  5. Billas IM, Moras D (2005) Ligand-binding pocket of the ecdysone receptor. Vitam Horm 73: 101–129

    PubMed  CAS  Google Scholar 

  6. McEwan IJ (2004) Sex, drugs and gene expression: signalling by members of the nuclear receptor superfamily. Essays Biochem 40: 1–10

    PubMed  CAS  Google Scholar 

  7. Edwards J, Bartlett JM (2005) The androgen receptor and signal-transduction pathways in hormone-refractory prostate cancer. Part 2: Androgen-receptor cofactors and bypass pathways. BJU Int 95: 1327–1335

    Article  PubMed  CAS  Google Scholar 

  8. Heinlein CA, Chang C (2002) The roles of androgen receptors and androgen-binding proteins in nongenomic androgen actions. Mol Endocrinol 16: 2181–2187

    Article  PubMed  CAS  Google Scholar 

  9. Lu S, Jenster G, Epner DE (2000) Androgen induction of cyclin-dependent kinase inhibitor p21 gene: role of androgen receptor and transcription factor Sp1 complex. Mol Endocrinol 14: 753–760

    Article  PubMed  CAS  Google Scholar 

  10. Doyu M, Sobue G, Mukai E et al. (1992) Severity of X-linked recessive bulbospinal neuronopathy correlates with size of the tandem CAG repeat in androgen receptor gene. Ann Neurol 32: 707–710

    Article  PubMed  CAS  Google Scholar 

  11. Montgomery JS, Price DK, Figg WD (2001) The androgen receptor gene and its influence on the development and progression of prostate cancer. J Pathol 195: 138–146

    Article  PubMed  CAS  Google Scholar 

  12. Hardy DO, Scher HI, Bogenreider T et al. (1996) Androgen receptor CAG repeat lengths in prostate cancer: correlation with age of onset. J Clin Endocrinol Metab 81: 4400–4405

    Article  PubMed  CAS  Google Scholar 

  13. Giovannucci E, Stampfer MJ, Krithivas K et al. (1997) The CAG repeat within the androgen receptor gene and its relationship to prostate cancer. Proc Natl Acad Sci USA 94: 3320–3323

    Article  PubMed  CAS  Google Scholar 

  14. Ingles SA, Ross RK, Yu MC et al. (1997) Association of prostate cancer risk with genetic polymorphisms in vitamin D receptor and androgen receptor. J Natl Cancer Inst 89: 166–170

    Article  PubMed  CAS  Google Scholar 

  15. Hakimi JM, Schoenberg MP, Rondinelli RH et al. (1997) Androgen receptor variants with short glutamine or glycine repeats may identify unique subpopulations of men with prostate cancer. Clin Cancer Res 3: 1599–1608

    PubMed  CAS  Google Scholar 

  16. Freedman ML, Pearce CL, Penney KL et al. (2005) Systematic evaluation of genetic variation at the androgen receptor locus and risk of prostate cancer in a multiethnic cohort study. Am J Hum Genet 76: 82–90

    Article  PubMed  CAS  Google Scholar 

  17. Stanford JL, Just JJ, Gibbs M et al. (1997) Polymorphic repeats in the androgen receptor gene: molecular markers of prostate cancer risk. Cancer Res 57: 1194–1198

    PubMed  CAS  Google Scholar 

  18. Correa-Cerro L, Wohr G, Haussler J et al. (1999) (CAG)nCAA and GGN repeats in the human androgen receptor gene are not associated with prostate cancer in a French-German population. Eur J Hum Genet 7: 357–362

    Article  PubMed  CAS  Google Scholar 

  19. Newmark JR, Hardy DO, Tonb DC et al. (1992) Androgen receptor gene mutations in human prostate cancer. Proc Natl Acad Sci USA 89: 6319–6323

    Article  PubMed  CAS  Google Scholar 

  20. Lin DL, Whitney MC, Yao Z, Keller ET (2001) Interleukin-6 induces androgen responsiveness in prostate cancer cells through up-regulation of androgen receptor expression. Clin Cancer Res 7: 1773–1781

    PubMed  CAS  Google Scholar 

  21. Culig Z, Hobisch A, Cronauer MV et al. (1993) Mutant androgen receptor detected in an advanced-stage prostatic carcinoma is activated by adrenal androgens and progesterone. Mol Endocrinol 7: 1541–1550

    Article  PubMed  CAS  Google Scholar 

  22. Brooke GN, Parker MG, Bevan CL (2007) Mechanisms of androgen receptor activation in advanced prostate cancer: differential co-activator recruitment and gene expression. Oncogene (Epub, doi: 10.1038/sj.onc.1210955)

  23. Cronauer MV, Schulz WA, Burchardt T et al. (2003) The androgen receptor in hormone-refractory prostate cancer: relevance of different mechanisms of androgen receptor signaling (Review). Int J Oncol 23: 1095–1102

    PubMed  CAS  Google Scholar 

  24. Feldman BJ, Feldman D (2001) The development of androgen-independent prostate cancer. Nat Rev Cancer 1: 34–45

    Article  PubMed  CAS  Google Scholar 

  25. Haelens A, Tanner T, Denayer S et al. (2007) The hinge region regulates DNA binding, nuclear translocation, and transactivation of the androgen receptor. Cancer Res 67: 4514–4523

    Article  PubMed  CAS  Google Scholar 

  26. Gregory CW, He B, Johnson RT et al. (2001) A mechanism for androgen receptor-mediated prostate cancer recurrence after androgen deprivation therapy. Cancer Res 61: 4315–4319

    PubMed  CAS  Google Scholar 

  27. Chen CD, Welsbie DS, Tran C et al. (2004) Molecular determinants of resistance to antiandrogen therapy. Nat Med 10: 33–39

    Article  PubMed  CAS  Google Scholar 

  28. Titus MA, Schell MJ, Lih FB et al. (2005) Testosterone and dihydrotestosterone tissue levels in recurrent prostate cancer. Clin Cancer Res 11: 4653–4657

    Article  PubMed  CAS  Google Scholar 

  29. Nakayama T, Watanabe M, Suzuki H et al. (2000) Epigenetic regulation of androgen receptor gene expression in human prostate cancers. Lab Invest 80: 1789–1796

    Article  PubMed  CAS  Google Scholar 

  30. Cronauer MV, Hittmair A, Eder IE et al. (1997) Basic fibroblast growth factor levels in cancer cells and in sera of patients suffering from proliferative disorders of the prostate. Prostate 31: 223–233

    Article  PubMed  CAS  Google Scholar 

  31. Culig Z, Hobisch A, Cronauer MV et al. (1994) Androgen receptor activation in prostatic tumor cell lines by insulin-like growth factor-I, keratinocyte growth factor, and epidermal growth factor. Cancer Res 54: 5474–5478

    PubMed  CAS  Google Scholar 

  32. Godoy-Tundidor S, Cavarretta IT, Fuchs D et al. (2005) Interleukin-6 and oncostatin M stimulation of proliferation of prostate cancer 22Rv1 cells through the signaling pathways of p38 mitogen-activated protein kinase and phosphatidylinositol 3-kinase. Prostate 64: 209–216

    Article  PubMed  CAS  Google Scholar 

  33. Signoretti S, Montironi R, Manola J et al. (2000) Her-2-neu expression and progression toward androgen independence in human prostate cancer. J Natl Cancer Inst 92: 1918–1925

    Article  PubMed  CAS  Google Scholar 

  34. Craft N, Shostak Y, Carey M, Sawyers CL (1999) A mechanism for hormone-independent prostate cancer through modulation of androgen receptor signaling by the HER-2/neu tyrosine kinase. Nat Med 5: 280–285

    Article  PubMed  CAS  Google Scholar 

  35. McKenna NJ, O’Malley BW (2002) Minireview: nuclear receptor coactivators – an update. Endocrinology 143: 2461–2465

    Article  PubMed  CAS  Google Scholar 

  36. Heemers HV, Sebo TJ, Debes JD et al. (2007) Androgen deprivation increases p300 expression in prostate cancer cells. Cancer Res 67: 3422–3430

    Article  PubMed  CAS  Google Scholar 

  37. Kang HY, Yeh S, Fujimoto N, Chang C (1999) Cloning and characterization of human prostate coactivator ARA54, a novel protein that associates with the androgen receptor. J Biol Chem 274: 8570–8576

    Article  PubMed  CAS  Google Scholar 

  38. Kobayashi M, Honma T, Matsuda Y et al. (2000) Nuclear translocation of beta-catenin in colorectal cancer. Br J Cancer 82: 1689–1693

    Article  PubMed  CAS  Google Scholar 

  39. Roose J, Clevers H (1999) TCF transcription factors: molecular switches in carcinogenesis. Biochem Biophys Acta 1424: 23–37

    Google Scholar 

  40. Oving IM, Clevers HC (2002) Molecular causes of colon cancer. Eur J Clin Invest 32: 448–457

    Article  PubMed  CAS  Google Scholar 

  41. Fodde R, Smits R, Clevers H (2001) APC, signal transduction and genetic instability in colorectal cancer. Nat Rev Cancer 1: 55–67

    Article  PubMed  CAS  Google Scholar 

  42. Wetering M van de, Sancho E, Verweij C et al. (2002) The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 111: 241–250

    Article  PubMed  Google Scholar 

  43. Gounari F, Signoretti S, Bronson R et al. (2002) Stabilization of beta-catenin induces lesions reminiscent of prostatic intraepithelial neoplasia, but terminal squamous transdifferentiation of other secretory epithelia. Oncogene 21: 4099–4107

    Article  PubMed  CAS  Google Scholar 

  44. Bierie B, Nozawa M, Renou JP et al. (2003) Activation of beta-catenin in prostate epithelium induces hyperplasias and squamous transdifferentiation. Oncogene 22: 3875–3887

    Article  PubMed  CAS  Google Scholar 

  45. Chesire DR, Isaacs WB (2003) Beta-catenin signaling in prostate cancer: an early perspective. Endocr Relat Cancer 10: 537–560

    Article  PubMed  CAS  Google Scholar 

  46. Yang F, Li X, Sharma M et al. (2002) Linking beta-catenin to androgen-signaling pathway. J Biol Chem 277: 11336–11344

    Article  PubMed  CAS  Google Scholar 

  47. Truica CI, Byers S, Gelmann EP (2000) Beta-catenin affects androgen receptor transcriptional activity and ligand specificity. Cancer Res 60: 4709–4713

    PubMed  CAS  Google Scholar 

  48. Cronauer MV, Schulz WA, Ackermann R, Burchardt M (2005) Effects of WNT/beta-catenin pathway activation on signaling through T-cell factor and androgen receptor in prostate cancer cell lines. Int J Oncol 26: 1033–1040

    PubMed  CAS  Google Scholar 

  49. Cronauer MV, Ince Y, Engers R et al. (2007) Nitric oxide-mediated inhibition of androgen receptor activity: possible implications for prostate cancer progression. Oncogene 26: 1875–1884

    Article  PubMed  CAS  Google Scholar 

  50. Rogatsky I, Waase CL, Garabedian MJ (1998) Phosphorylation and inhibition of rat glucocorticoid receptor transcriptional activation by glycogen synthase kinase-3 (GSK-3). Species-specific differences between human and rat glucocorticoid receptor signaling as revealed through GSK-3 phosphorylation. J Biol Chem 273: 14315–14321

    Article  PubMed  CAS  Google Scholar 

  51. Salas TR, Kim J, Vakar-Lopez F et al. (2004) Glycogen synthase kinase-3 beta is involved in the phosphorylation and suppression of androgen receptor activity. J Biol Chem 279: 19191–19200

    Article  PubMed  CAS  Google Scholar 

  52. Medunjanin S, Hermani A, De Servi B et al. (2005) Glycogen synthase kinase-3 interacts with and phosphorylates estrogen receptor alpha and is involved in the regulation of receptor activity. J Biol Chem 280: 33006–33014

    Article  PubMed  CAS  Google Scholar 

  53. Chen S, Xu Y, Yuan X et al. (2006) Androgen receptor phosphorylation and stabilization in prostate cancer by cyclin-dependent kinase 1. Proc Natl Acad Sci USA 103: 15969–15974

    Article  PubMed  CAS  Google Scholar 

  54. Gotz C, Kartarius S, Schetting S, Montenarh M (2005) Immunologically defined subclasses of the protein kinase CK2 beta-subunit in prostate carcinoma cell lines. Mol Cell Biochem 274: 181–187

    Article  PubMed  CAS  Google Scholar 

  55. Litchfield DW (2003) Protein kinase CK2: structure, regulation and role in cellular decisions of life and death. Biochem J 369: 1–15

    Article  PubMed  CAS  Google Scholar 

  56. Hessenauer A, Montenarh M, Gotz C (2003) Inhibition of CK2 activity provokes different responses in hormone-sensitive and hormone-refractory prostate cancer cells. Int J Oncol 22: 1263–1270

    PubMed  CAS  Google Scholar 

  57. Slaton JW, Unger GM, Sloper DT et al. (2004) Induction of apoptosis by antisense CK2 in human prostate cancer xenograft model. Mol Cancer Res 2: 712–721

    PubMed  CAS  Google Scholar 

  58. Laramas M, Pasquier D, Filhol O et al. (2007) Nuclear localization of protein kinase CK2 catalytic subunit (CK2alpha) is associated with poor prognostic factors in human prostate cancer. Eur J Cancer 43: 928–934

    Article  PubMed  CAS  Google Scholar 

  59. Cronauer MV, Schulz WA, Burchardt T et al. (2004) Inhibition of p53 function diminishes androgen receptor-mediated signaling in prostate cancer cell lines. Oncogene 23: 3541–3549

    Article  PubMed  CAS  Google Scholar 

  60. Peterziel H, Mink S, Schonert A et al. (1999) Rapid signalling by androgen receptor in prostate cancer cells. Oncogene 18: 6322–6329

    Article  PubMed  CAS  Google Scholar 

  61. Unni E, Sun S, Nan B et al. (2004) Changes in androgen receptor nongenotropic signaling correlate with transition of LNCaP cells to androgen independence. Cancer Res 64: 7156–7168

    Article  PubMed  CAS  Google Scholar 

  62. Makridakis N, Ross RK, Pike MC et al. (1997) A prevalent missense substitution that modulates activity of prostatic steroid 5alpha-reductase. Cancer Res 57: 1020–1022

    PubMed  CAS  Google Scholar 

  63. Nikitin AY, Matoso A, Roy-Burman P (2007) Prostate stem cells and cancer. Histol Histopathol 22: 1043–1049

    PubMed  CAS  Google Scholar 

  64. Richardson GD, Robson CN, Lang SH et al. (2004) CD133, a novel marker for human prostatic epithelial stem cells. J Cell Sci 117: 3539–3545

    Article  PubMed  CAS  Google Scholar 

  65. Collins AT, Berry PA, Hyde C et al. (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65: 10946–10951

    Article  PubMed  CAS  Google Scholar 

  66. Cantin L, Faucher F, Couture JF et al. (2007) Structural characterization of the human androgen receptor ligand-binding domain complexed with EM5744, a rationally-designed steroidal ligand bearing a bulky chain directed toward helix 12. J Biol Chem 282(42): 30910–30919

    Article  PubMed  CAS  Google Scholar 

  67. Eder IE, Hoffmann J, Rogatsch H et al. (2002) Inhibition of LNCaP prostate tumor growth in vivo by an antisense oligonucleotide directed against the human androgen receptor. Cancer Gene Ther 9: 117–125

    Article  PubMed  CAS  Google Scholar 

  68. Haag P, Bektic J, Bartsch G et al. (2005) Androgen receptor down regulation by small interference RNA induces cell growth inhibition in androgen sensitive as well as in androgen independent prostate cancer cells. J Steroid Biochem Mol Biol 96: 251–258

    Article  PubMed  CAS  Google Scholar 

  69. Haag P, Frauscher F, Gradl J et al. (2006) Microbubble-enhanced ultrasound to deliver an antisense oligodeoxynucleotide targeting the human androgen receptor into prostate tumours. J Steroid Biochem Mol Biol 102: 103–113

    Article  PubMed  CAS  Google Scholar 

  70. Neckers L (2002) Heat shock protein 90 inhibition by 17-allylamino-17-demethoxygeldanamycin: a novel therapeutic approach for treating hormone-refractory prostate cancer. Clin Cancer Res 8: 962–966

    PubMed  CAS  Google Scholar 

  71. Kamal A, Thao L, Sensintaffar J et al. (2003) A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 425: 407–410

    Article  PubMed  CAS  Google Scholar 

  72. Solit DB, Zheng FF, Drobnjak M et al. (2002) 17-Allylamino-17-demethoxygeldanamycin induces the degradation of androgen receptor and HER-2/neu and inhibits the growth of prostate cancer xenografts. Clin Cancer Res 8: 986–993

    PubMed  CAS  Google Scholar 

  73. Heath EI, Gaskins M, Pitot HC et al. (2005) A phase II trial of 17-allylamino-17-demethoxygeldanamycin in patients with hormone-refractory metastatic prostate cancer. Clin Prostate Cancer 4: 138–141

    PubMed  CAS  Google Scholar 

  74. Agus DB, Scher HI, Higgins B et al. (1999) Response of prostate cancer to anti-Her-2/neu antibody in androgen-dependent and -independent human xenograft models. Cancer Res 59: 4761–4764

    PubMed  CAS  Google Scholar 

  75. Hammarsten P, Rudolfsson SH, Henriksson R et al. (2007) Inhibition of the epidermal growth factor receptor enhances castration-induced prostate involution and reduces testosterone-stimulated prostate growth in adult rats. Prostate 67: 573–581

    Article  PubMed  CAS  Google Scholar 

  76. Sepp-Lorenzino L, Tjaden G, Moasser MM et al. (2001) Farnesyl: protein transferase inhibitors as potential agents for the management of human prostate cancer. Prostate Cancer Prostatic Dis 4: 33–43

    Article  PubMed  CAS  Google Scholar 

  77. Formento P, Hannoun-Levi JM, Gerard F et al. (2005) Gefitinib-trastuzumab combination on hormone-refractory prostate cancer xenograft. Eur J Cancer 41: 1467–1473

    Article  PubMed  CAS  Google Scholar 

  78. Curigliano G, De Braud F, Teresa Sandri M et al. (2007) Gefitinib combined with endocrine manipulation in patients with hormone-refractory prostate cancer: quality of life and surrogate markers of activity. Anticancer Drugs 18: 949–954

    PubMed  CAS  Google Scholar 

  79. Lara PN Jr, Chee KG, Longmate J et al. (2004) Trastuzumab plus docetaxel in HER-2/neu-positive prostate carcinoma: final results from the California Cancer Consortium Screening and Phase II Trial. Cancer 100: 2125–2131

    Article  PubMed  CAS  Google Scholar 

  80. Ziada A, Barqawi A, Glode LM et al. (2004) The use of trastuzumab in the treatment of hormone refractory prostate cancer; phase II trial. Prostate 60: 332–337

    Article  PubMed  CAS  Google Scholar 

  81. Diaz LA MW, Carducci M, Pili R et al. (2007) Infliximab in patients with hormone refractory prostate cancer and bone metastases with pain. Abstractband ASCO 2007, p 268

  82. Grisouard J, Medunjanin S, Hermani A et al. (2007) Glycogen synthase kinase-3 protects estrogen receptor alpha from proteasomal degradation and is required for full transcriptional activity of the receptor. Mol Endocrinol, Epub, doi:10.1210/me.2007-0129

  83. Mazor M, Kawano Y, Zhu H et al. (2004) Inhibition of glycogen synthase kinase-3 represses androgen receptor activity and prostate cancer cell growth. Oncogene 23: 7882–7892

    Article  PubMed  CAS  Google Scholar 

  84. Wang L, Lin HK, Hu YC et al. (2004) Suppression of androgen receptor-mediated transactivation and cell growth by the glycogen synthase kinase 3 beta in prostate cells. J Biol Chem 279: 32444–32452

    Article  PubMed  CAS  Google Scholar 

  85. Liao X, Thrasher JB, Holzbeierlein J et al. (2004) Glycogen synthase kinase-3beta activity is required for androgen-stimulated gene expression in prostate cancer. Endocrinology 145: 2941–2949

    Article  PubMed  CAS  Google Scholar 

  86. Kroncke KD, Carlberg C (2000) Inactivation of zinc finger transcription factors provides a mechanism for a gene regulatory role of nitric oxide. FASEB J 14: 166–173

    PubMed  CAS  Google Scholar 

  87. Garban HJ, Marquez-Garban DC, Pietras RJ, Ignarro LJ (2005) Rapid nitric oxide-mediated S-nitrosylation of estrogen receptor: regulation of estrogen-dependent gene transcription. Proc Natl Acad Sci USA 102: 2632–2636

    Article  PubMed  CAS  Google Scholar 

  88. Cronauer MV, Stadlmann S, Klocker H et al. (1999) Basic fibroblast growth factor synthesis by human peritoneal mesothelial cells: induction by interleukin-1. Am J Pathol 155: 1977–1984

    PubMed  CAS  Google Scholar 

  89. Mizokami A, Saiga H, Matsui T et al. (1992) Regulation of androgen receptor by androgen and epidermal growth factor in a human prostatic cancer cell line, LNCaP. Endocrinol Jpn 39: 235–243

    PubMed  CAS  Google Scholar 

  90. Henttu P, Vihko P (1993) Growth factor regulation of gene expression in the human prostatic carcinoma cell line LNCaP. Cancer Res 53: 1051–1058

    PubMed  CAS  Google Scholar 

  91. Adam RM, Kim J, Lin J et al. (2002) Heparin-binding epidermal growth factor-like growth factor stimulates androgen-independent prostate tumor growth and antagonizes androgen receptor function. Endocrinology 143: 4599–4608

    Article  PubMed  CAS  Google Scholar 

  92. Culig Z, Hobisch A, Herold M et al. (1998) Interleukin 1beta mediates the modulatory effects of monocytes on LNCaP human prostate cancer cells. Br J Cancer 78: 1004–1011

    PubMed  CAS  Google Scholar 

  93. Hobisch A, Eder IE, Putz T et al. (1998) Interleukin-6 regulates prostate-specific protein expression in prostate carcinoma cells by activation of the androgen receptor. Cancer Res 58: 4640–4645

    PubMed  CAS  Google Scholar 

  94. Godoy-Tundidor S, Hobisch A, Pfeil K et al. (2002) Acquisition of agonistic properties of nonsteroidal antiandrogens after treatment with oncostatin M in prostate cancer cells. Clin Cancer Res 8: 2356–2361

    PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Rinnab.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rinnab, L., Hessenauer, A., Schütz, S. et al. Die Rolle des Androgenrezeptors im hormonrefraktären Prostatakarzinom. Urologe 47, 314–325 (2008). https://doi.org/10.1007/s00120-008-1637-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00120-008-1637-1

Schlüsselwörter

Keywords

Navigation