Skip to main content
Log in

Positronenemissionstomographie (PET) zur Diagnostik und zum Therapiemonitoring bei urologischen Tumoren

Positron emission tomography (PET) for diagnosis and monitoring of treatment for urological tumors

  • Leitthema
  • Published:
Der Urologe, Ausgabe A Aims and scope Submit manuscript

Zusammenfassung

Die Positronenemissionstomographie (PET) unter Einsatz der (18F)2-Fluoro-D-2-desoxyglukose (FDG) hat sich bei zahlreichen nichturologischen Tumoren als eine Untersuchungsform mit hoher Sensitivität und Spezifität in der Primärdiagnostik, zum Rezidivnachweis und zur Therapiekontrolle gezeigt. Aufgabe dieses Reviews war eine Untersuchung der Bedeutung der PET als bildgebendes Verfahren bei malignen Tumoren des Urogenitaltrakts.

Die Rolle der PET wurde für maligne Tumoren der Niere, des Hodens, der Prostata und der Harnblase durch Sichtung und Auswertung der vorhandenen Literatur untersucht. Die Rolle der FDG-PET beim Nierenzellkarzinom ist in der Detektion von Lokalrezidiven nach definitiver lokaler Therapie und von Metastasen zu sehen. Die höhere Spezifität der PET im Vergleich zu anderen diagnostischen Methoden (CT, Sono, MRT) beim rezidivierenden oder metastasierten Nierenzellkarzinom positioniert dieses diagnostische Werkzeug als Ergänzung zu anderen bildgebenden Verfahren bei dieser Tumorentität.

Die klinische Bedeutung der PET ist gesichert für die Identifikation von vitalem Residualtumorgewebe nach Chemotherapie des seminomatösen Keimzelltumors. Die Bedeutung dieser diagnostischen Methode beim primären Tumorstaging und in der Diagnostik von nichtseminomatösen Keimzelltumoren bleibt aufgrund der häufig falsch-negativen Reaktion des Teratomanteils gering.

Die FDG-PET ist weder für die Primär- noch in der Lokalrezidivdiagnostik beim Prostata- und Harnblasenkarzinom ausreichend sensitiv. Auch beim Nachweis zumeist osteoblastischer Knochenmetastasen des Prostatakarzinoms zeigt sich die PET dem konventionellen Knochenszintigramm nicht überlegen.

Der jüngste Einsatz alternativer z. T. nicht renal eliminierter Tracer (Acetat, Cholin) hat die Sensitivität und Spezifität der PET auch bei dieser Tumorentität erhöht, sodass weitere klinische Studien die Bedeutung dieser technischen Modifikation für die Validität der Untersuchung zeigen müssen.

Nur beim diagnostischen Follow-up von Patienten mit seminomatösen Keimzelltumoren nach Chemotherapie erscheint die PET ausreichend klinisch evaluiert, um sie als etabliertes bildgebendes Verfahren zu werten. Bei allen anderen Malignomen des Urogenitaltrakts steht dieser Beweis noch aus.

Abstract

Positron emission tomography (PET) using (18F)2-fluoro-D-2-desoxyglucose (FDG) has been shown to be a highly sensitive and specific imaging modality in the diagnosis of primary and recurrent tumors and in the control of therapies in numerous non-urologic cancers. It was the aim of this review to validate the significance of PET as a diagnostic tool in malignant tumors of the urogenital tract.

A systematic review of the current literature concerning the role of PET for malignant tumors of the kidney, testicles, prostate, and bladder was carried out. The role of FDG PET for renal cell cancer can be seen in the detection of recurrences after definitive local therapy and metastases. The higher sensitivity of PET in comparison to other therapeutic modalities (CT, ultrasound, MRI) in recurrent and metastatic renal cell cancer suggests a supplemental role of this diagnostic procedure to complement other imaging modalities.

The clinical value of PET is established for the identification of vital tumor tissue after chemotherapy of seminomatous germ cell tumors. This diagnostic method has little significance for primary tumor staging and diagnosis of non-seminomatous germ cell tumor because of the high probability of false-negative results in adult teratomas.

FDG PET is not sensitive enough in the diagnosis of primary or recurrent tumors in prostate or bladder cancer. Also PET did not prove to be superior to conventional bone scintigram in the detection of mostly osteoblastic metastases in prostate cancer. The recent use of alternative tracers, which are partly not eliminated by urinary secretion (acetate, choline) has increased the sensitivity and specificity of PET also in this tumor entity so that further clinical investigations are needed to validate these technical modifications in their significance for this imaging modality.

PET appears to be sufficiently evaluated only for the diagnostic follow-up of patients with seminomatous germ cell tumors after chemotherapy to regard it is the diagnostic tool of first choice. For all other tumors of the urogenital tract this proof is still awaited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Albers P, Bender H, Yilmaz H, Schoenreich G, Biersack HJ, Mueller SC (1999) Positron emission tomography in the clinical staging of patients with stage I and II testicular germ cell tumors. Urology 53: 808–811

    Article  CAS  PubMed  Google Scholar 

  2. Bachor R, Kotzerke J, Gottfried HW et al. (1996) Positronen-Emissions-Tomographie in der Diagnose von Nierenzellkarzinomen. Urologe A 1996: 146–150

    Google Scholar 

  3. Bachor R, Kotzerke J, Reske SN, Hautmann R (1999) Lymph node staging of bladder neck carcinoma with positron emission tomography. Urologe A 38: 46–50

    Article  CAS  PubMed  Google Scholar 

  4. Bokemeyer C, Kollmannsberger C, Oechsle K et al. (2002) Early prediction of treatment response to high-dose salvage chemotherapy in patients with relapsed germ cell cancer using [18F]FDG PET. Br J Cancer 86: 506–511

    Article  CAS  PubMed  Google Scholar 

  5. Chang CH, Wu HC, Tsai JJP, Shen YY, Changlai SP, Kao A (2003) Detecting metastatic pelvic lymph nodes by 18F-2-deoxyglucose positron emission tomography in patients with prostate-specific antigen relapse after treatment for localized prostate cancer. Urol Int 70: 311–315

    Article  PubMed  Google Scholar 

  6. Cook GJ, Houston S, Rubens R, Maisey MN, Fogelman I (1998) Detection of bone metastases in breast cancer by 18FDG PET: differing metabolic activity in osteoblastic and osteolytic lesions. J Clin Oncol 16: 3375–3379

    CAS  PubMed  Google Scholar 

  7. Costello LC, Franklin RB (1997) Citrate metabolism of normal and malignant prostate epithelial cells. Urology 50: 3–12

    Article  CAS  PubMed  Google Scholar 

  8. Cremerius U, Effert PJ, Adam G et al. (1998) FDG PET for detection and control of metastatic germ cell tumor. J Nucl Med 39: 815–22

    CAS  PubMed  Google Scholar 

  9. Cremerius U, Wildberger JE, Borchers, Zimny M, Jakse G, Gunth RW, Buell U (1999) Does positron emission tomography using 18-fluoro-2-deoxyglucose improve clinical staging of testicular cancer? Results of a study in 50 patients. Urology 54: 900–904

    Article  CAS  PubMed  Google Scholar 

  10. de Jong IJ, Pruim J, Elsinga PH (2002) Visualization of prostate cancer with 11C-choline positron emission tomography. Eur Urol 42: 18–23

    Article  CAS  PubMed  Google Scholar 

  11. De Santis M, Becherer A, Bokemeyer C et al. (2001) Predictive impact of 2–18Fluoro-2-deoxy-D-glucose positron emission tomography for residual postchemotherapy masses in patients with bulky seminoma. J Clin Oncol 19: 3740–3744

    PubMed  Google Scholar 

  12. De Santis M, Becherer A, Bokemeyer C et al. (2004) 2-18fluoro-deoxy-D-glucose positron emission tomography is a reliable predictor for viable tumor in postchemotherapy seminoma: an update of the prospective multicentric SEMPET trial. J Clin Oncol 22: 1034–1039

    Article  PubMed  Google Scholar 

  13. De Santis M, Pont J (2004) The role of positron emission tomography in germ cell cancer. World J Urol 22: 41–46

    Article  PubMed  Google Scholar 

  14. Effert PJ, Bares R, Handt S, Wolff JM, Bull U, Jakse G (1996) Meatbolic imaging of untreated prostate cancer by positron emission tomography with 18 fluorine-labelled deoxyglucose. J Urol 155: 994–998

    Article  CAS  PubMed  Google Scholar 

  15. Fernandez EB, Moul JW, Foley JP, Colon E, McLeod DG (1994) Retroperitoneal imaging with third and fourth generation computed axial tomography in clinical stage I nonseminomatous germ cell tumors. Urology 44: 548–552

    CAS  PubMed  Google Scholar 

  16. Fricke E, Machtens S, Hofmann M et al. (2003) Positron emission tomography with 11C-acetate and 18F-FDG in prostate cancer patients. Eur J Nucl Med Mol Imag 30: 607–611

    CAS  Google Scholar 

  17. Ganjoo KN, Chan RJ, Sharma M, Einhorn LH (1999) Positron emission tomography scans in the evaluation of postchemotherapy residual masses in patients with seminoma. J Clin Oncol 17: 3457–3460

    CAS  PubMed  Google Scholar 

  18. Goldberg MA, Mayo-Smith WW, Papanicolaou N (1997) FDG PET characterization of renal masses: preliminary experience. Clin Radiol 52: 510–515

    CAS  PubMed  Google Scholar 

  19. Grossfeld GD, Stier DM, Flanders SC (1998) Use of second treatment following definitive local therapy for prostate cancer: data from the CaPSURE database. J Urol 160: 1398–1404

    Article  CAS  PubMed  Google Scholar 

  20. Hain SF, O’Doherty MJ, Timothy AR, Leslie M, Harper P, Hudart R (2000) Fluorodeoxyglucose positron emission tomography in the evaluation of germ cell tumors at relapse. Br J Cancer 83: 863–869

    Article  CAS  PubMed  Google Scholar 

  21. Hain SF, O’Doherty MJ, Timothy AR (2000) Fluorodeoxyglucose PET in the initial staging of germ cell tumours. Eur J Nucl Med 27: 590–594

    Article  CAS  PubMed  Google Scholar 

  22. Hara T, Kosaka N, Kishi H (1998) PET imaging of prostate cancer using carbon-11-choline. J Nucl Med 39: 990–995

    CAS  PubMed  Google Scholar 

  23. Heicapell R, Müller-Mattheis V, Reinhardt M (1999) Staging of pelvic lymph nodes in neoplasms of the bladder and prostate by positron emission tomography with 2-[(18F)]-2-deoxy-D-glucose. Eur Urol 36: 582–587

    Article  PubMed  Google Scholar 

  24. Hofer C, Laubenbacher C, Block T, Breul J, Hartung R, Schwaiger M (1999) Fluorine-18-fluorodeoxyglucose positron emission tomography is useless for the detection of local recurrence after radical prostatectomy. Eur Urol 36: 31–35

    Article  CAS  Google Scholar 

  25. Hofer C, Kübler H, Hartung R, Breul J, Avril N (2001) Diagnosis and monitoring of urological tumors using positron emission tomography. Eur Urol 40: 481–487

    Article  CAS  PubMed  Google Scholar 

  26. Hogeboom WR, Hoekstra HJ, Mooyaart EL, Sleijfer DT, Schraffordt Koops H (1993) Magnetic resonance imaging of retroperitoneal lymph node metastases of non-seminomatous germ cell tumors of the testis. Eur J Surg Oncol 19: 429–437

    CAS  PubMed  Google Scholar 

  27. Hoh C, Figlin R, Belldegrun A (1996) Evaluation of renal cell carcinoma with whole body FDG PET. J Nucl Med 37: 141

    Google Scholar 

  28. Horwich A, Alsanjari N, A’Hern R (1992) Surveillance following orchidectomy for stage I testicular seminoma. Br J Cancer 65: 775–778

    CAS  PubMed  Google Scholar 

  29. Hosten N, Stroszczynski C, Rick O, Lemke M, Felix R (1999) Retroperitoneale Rezidive nicht-seminomatöser Hodentumoren: Computertomographische Befunde vor retroperitonealer Lymphadenektomie. Fortschr Röntgenstr 170: 61–65

    Google Scholar 

  30. Jadvar H, Kherbache HM, Pinski JK, Conti PS (2003) Diagnostic role of [F-18]-FDG positron emission tomography in restaging renal cell carcinoma. Clin Nephrol 60: 395–400

    CAS  PubMed  Google Scholar 

  31. Kanamaru H, Oyama N, Akino H, Okada K (2000) Evaluation of prostate cancer using FDG-PET. Hinyokika Kiyo 46: 851–853

    CAS  PubMed  Google Scholar 

  32. Kang DE, White RL Jr, Zuger JH, Sasser HC, Teigland CM (2004) Clinical use of Fluorodeoxyglucose F18 Positron Emission Tomography for detection of renal cell carcinoma. J Urol 171: 1806–1809

    Article  PubMed  Google Scholar 

  33. Karapetis CS, Strickland AH, Yip D, Steer C, Harper PG (2003) Use of fluorodeoxyglucose positron emission tomography scans in patients with advanced germ cell tumour following chemotherapy: single-center experience with long-term follow-up. Int Med 33: 427–435

    Article  CAS  Google Scholar 

  34. Kato T, Tsukamato E, Kuge Y et al. (2002) Accumulation of (11C) acetate in normal prostate and benign prostatic hyperplasia: comparison with prostate cancer. Eur J Nucl Med 29: 1492–1495

    Article  CAS  Google Scholar 

  35. Kocher F, Grimmel S, Hautmann R (1994) Preoperative lymph node staging in patients with kidney and urinary bladder neoplasm. J Nucl Med 35 [Suppl]: 233

    Google Scholar 

  36. Kollmannsberger C, Oechsle K, Dohmen BM et al. (2002) Prospective comparison of [18F] fluorodeoxyglucose positron emission tomography with conventional assessment by computed tomography scans and serum tumor markers for the evaluation of residual masses in patients with nonseminomatous germ cell carcinoma. Cancer 94: 2353–2362

    Article  PubMed  Google Scholar 

  37. Kosuda S, Kison PV, Greenough R, Grossman HB, Wahl RL (1997) Preliminary assessment of fluorine-18fluorodeoxyglucose positron emisson tomography in patients with bladder cancer. Eur J Nucl Med 24: 615–620

    Article  CAS  PubMed  Google Scholar 

  38. Kotzerke J, Prang J, Neumaier B (2000) Experience with carbon-11 choline positron emission tomography in prostate carcinoma. Eur J Nucl Med 27: 1415–1419

    Article  CAS  PubMed  Google Scholar 

  39. Kotzerke J, Volkmer BG, Glatting G et al. (2003) Intraindividual comparison of [11C] acetate and [11C] choline PET for detection of metastases of prostate cancer. Nuklearmedizin 42: 25–30

    CAS  PubMed  Google Scholar 

  40. Lassen U, Daugaard G, Eigtved A, Hojgaard L, Damgaard K, Rorth M (2003) Whole body FDG-PET in patients with stage I non-seminomatous germ cell tumours. Eur J Nucl Med Mol Imaging 30: 396–402

    CAS  PubMed  Google Scholar 

  41. Levine E (1995) Renal cell carcinoma: clinical aspects, imaging diagnosis, and staging. Semin Roentgenol 30: 128–148

    CAS  PubMed  Google Scholar 

  42. Liu IJ, Zafar MB, Lai YH, Segall GM, Terris MK (2001) Fluorodeoxyglucose positron emission tomography studies in diagnosis and staging of clinically organ-confined prostate cancer. Urology 57: 108–111

    Article  CAS  PubMed  Google Scholar 

  43. Majhail NS, Urbain JL, Albani JM et al. (2003) F-18 Fluordeoxyglucose positron emission tomography in the evaluation of distant metastases from renal cell carcinoma. J Clin Oncol 21: 3995–4000

    Article  PubMed  Google Scholar 

  44. Maszelin P, Lumbroso J, Theodore C, Foehrenbach H, Merlet P, Syrota A (2000) Fluorodeoxyglucose (FDG) positron emission tomography (PET) in testicular germ cell tumors in adults: preliminary French clinical evaluation, development of the technique and its clinical applications. Prog Urol 10: 1190–1199

    CAS  PubMed  Google Scholar 

  45. McLeod DG, Weiss RB, Stablein DM (1991) Staging relationship and outcome in early stage testicular cancer: a report from the Testicular Intergroup Study. J Urol 145: 1178–1183

    CAS  PubMed  Google Scholar 

  46. Miyakita H, Tokunaga M, Onda H et al. (2002) Significance of 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) for detection of renal cell carcinoma and immunohistochemical glucose transporter 1 (GLUT-1) expression in the cancer. Int J Urol 9: 15–18

    Article  PubMed  Google Scholar 

  47. Miyauchi T, Brown RS, Grossman HB (1996) Correlation between visualization of primary renal cancer by FDG-PET and histopathological findings. Annual Meeting of the Society of Nuclear Medicine, 43, p 245

    Google Scholar 

  48. Morris MJ, Akhurst T, Osman I (2002) Fluorinated deoxyglucose positron emission tomography imaging in progressive metastatic prostate cancer. Urology 59: 913–918

    Article  PubMed  Google Scholar 

  49. Müller-Matheis V, Reinhardt M, Gerharz CD, Fürst G, Vosberg H, Müller-Gärtner H-W, Ackermann R (1998) Die Positronenemissionstomography mit [18F]-2-fluoro-2-deoxy-D-glucose (18FDG-PET) bei der Diagnose retroperitonealer Lymphknotenmetastasen von Hodentumoren. Urologe A 37: 609–620

    Article  PubMed  Google Scholar 

  50. Nunez R, Macapinlac HA, Yeung HW et al. (2002) Combined 18F-FDG and 11C-methionine PET scans in patients with newly progressive metastatic prostate cancer. J Nucl Med 43: 46–55

    PubMed  Google Scholar 

  51. Nuutinen JM, Lekinen S, Elomaa I et al. (1996) Detection of residual tumours in postchemotherapy testicular cancer by FDG-PET. Eur J Cancer 33: 1234–1241

    Article  Google Scholar 

  52. Oyama N, Akino H, Kanamaru H, Okada K (1998) Fluorodeoxyglucose positron emission tomography in diagnosis of untreated prostate cancer. Nippon Rinsho 56: 2052–2055

    CAS  PubMed  Google Scholar 

  53. Oyama N, Akino H, Suzuki Y, Kanamaru H, Sadato N, Yonekura Y, Okada K (1999) The increased accumulation of [18F] fluorodeoxyglucose in untreated prostate cancer. Jpn J Clin Oncol 29: 623–629

    Article  CAS  PubMed  Google Scholar 

  54. Oyama N, Akino H, Suzuki Y (2001) FDG PET for evaluating the change of glucose metabolism in prostate cancer after androgen ablation. Nucl Med Commun 22: 963–969

    Article  CAS  PubMed  Google Scholar 

  55. Oyama N, Akino H, Kanamaru H et al. (2002) 11C-acetate PET imaging of prostate cancer. J Nucl Med 43: 181–186

    CAS  PubMed  Google Scholar 

  56. Oyama N, Miller TR, Dehdashti F et al. (2003) 11C-acetate PET imaging of prostate cancer: detection of recurrent disease at PSA relapse. J Nucl Med 44: 549–555

    CAS  PubMed  Google Scholar 

  57. Pfannenberg AC, Oechsle K, Bokemeyer C et al. (2004) The role of [18F] FDG-PET, CT/MRI and tumor marker kinetics in the evaluation of postchemotherapy residual masses in the metastatic germ cell tumors—prospects for management. Worl J Urol 22: 132–139

    CAS  Google Scholar 

  58. Picchio M, Messa C, Landoni C et al. (2003) Value of [11C] choline-positron emission tomography for re-staging prostate cancer: a comparison with [18F] flurodeoxyglucose-positron emission tomography. J Urol 169: 1337–1340

    Article  CAS  PubMed  Google Scholar 

  59. Price DT, Coleman RE, Liao RP (2002) Comparison of [18F] fluorocholine and [18F] fluorodeoxyglucose for positron emission tomography of androgen dependent and androgen independent prostate cancer. J Urol 168: 273–280

    Article  PubMed  Google Scholar 

  60. Ramdave S, Thomas GW, Berlangiere SU et al. (2001) Fluorodeoxyglucose positron emission tomography for detection and management of renal cell carcinoma. J Urol 2001: 825–830

    Article  Google Scholar 

  61. Safaei A, Figlin R, Hoh CK, Silverman DH, Seltzer M, Phelps ME, Czernin J (2002) The usefulness of F-18 deoxyglucose whole-body positron emission tomography (PET) for re-staging of renal cell cancer. Clin Nephrol 57: 56–62

    CAS  PubMed  Google Scholar 

  62. Sanchez D, Zudaire JJ, Fernandez JM et al. (2002) 18F-fluoro-2-deoxyglucose-positron emission tomography in the evaluation of nonseminomatous germ cell tumours at relapse. BJU Int 89: 912–916

    Article  CAS  PubMed  Google Scholar 

  63. Sanz G, Robles JE, Gimenez M (1998) Positron emission tomography with 18fluorine-labeled deoxyglucose: utility in localized and advanced prostate cancer. Br J Urol 84: 1028–1031

    Google Scholar 

  64. Schultz SM, Einhorn LH, Conces DJ, Williams SD, Loehrer J (1989) Management of postchemotherapy residual mass in patients with advanced seminoma: Indiana University experience. J Clin Oncol 7: 1497–1503

    CAS  PubMed  Google Scholar 

  65. Seto E, Segall GM, Terris MK (2000) Positron emission tomography detection of osseous metastases of renal cell carcinoma not identified on bone scan. Urology 55: 286–291

    Article  CAS  Google Scholar 

  66. Seltzer MA, Barbaric Z, Belldegrun A et al. (1999) Comparison of helical computerized tomography, positron emission tomography and monoclonal antibody scans for evaluation of lymph node metastases in patients with prostate specific antigen relapse after treatment for localized prostate cancer. J Urol 162: 1322–1328

    Article  CAS  PubMed  Google Scholar 

  67. Shreve PD, Grossman HB, Gross MD, Wahl RL (1996) Metastatic prostate cancer: initial findings of PET with 2-deoxy-2-[F-18] fluoro-D-glucose. Radiology 199: 751–756

    CAS  PubMed  Google Scholar 

  68. Spermon JR, De Geus-Oei LF, Kiemeney LALM, Witjes JA, Oyen WJG (2002) The role of 18F-fluoro-2-deoxyglucose-positron emission tomography in initial staging and re-staging after chemotherapy for testicular germ cell tumours. BJU Int 89: 549–556

    Article  CAS  PubMed  Google Scholar 

  69. Stephens AW, Gonin R, Hutchins GD, Einhorn LH (1996) Positron emission tomography evaluation of residual radiographic abnormalities in postchemotheapy germ cell tumors patients. J Clin Oncol 14: 1637–1641

    CAS  PubMed  Google Scholar 

  70. Stomper PC, Kalish LA, Garnick MB, Richie JP, Kantoff PW (1991) CT and pathologic predictive features of residual mass histological findings after chemotherapy for nonseminomatous germ cell tumors: can residual malignancy or teratoma be excluded? Radiology 180: 711–714

    CAS  PubMed  Google Scholar 

  71. Strauss LG (1996) Fluorine-18 deoxyglucose and false positive results: a major problem in the diagnosis of oncological patients. Eur J Nucl Med 23: 1409–1415

    CAS  PubMed  Google Scholar 

  72. Sugarawa Y, Zasadny KR, Grossman HB, Francis IR, Clarke MF, Wahl RL (1999) Germ cell tumor:differentiation of viable tumor, mature teratoma, and necrotic tissue with FDG PET and kinetic modeling. Radiology 211: 249–256

    PubMed  Google Scholar 

  73. Sung J, Espiritu JI, Segall GM, Terris MK (2003) Fluorodeoxyglucose positron emission tomography studies in the diagnosis and staging of clinically advanced prostate cnacer. BJU Int 92: 24–27

    CAS  PubMed  Google Scholar 

  74. Tsatalpas P, Beuthien-Baumann B, Kropp J et al. (2002) Diagnostic value of 18F-FDG positron emission tomography for detection and treatment control of malignant germ cell tumors. Urol Int 68: 157–163

    Article  PubMed  Google Scholar 

  75. Wahl RL, Harney J, Hutchins G, Grossman HB (1991) Imaging of renal cancer using positron emission tomography with 2-deoxy-2-(18F)-fluoro-D-glucose: pilot animal and human studies. J Urol 146: 1470–1474

    CAS  PubMed  Google Scholar 

  76. Wilson CB, Young HE, Ott RJ, Flower MA, Cronin BF, Pratt BE, McCready VR, Horwich A (1995) Imaging metastatic testicular germ cell tumors with 18FDG positron emission tomography: prospects of detection and management. Eur J Nucl Med 22: 508–513

    CAS  PubMed  Google Scholar 

  77. Wu HC, Yen RF, Shen YY, Kao CH, Lin CC, Lee CC (2002) Comparing whole body 18F-2-deoxyglucose positron emission tomography and technetium-99m methylene diphospate bone scan to detect bone metastases in patients with renal cell carcinomas—a preliminary report. J Cancer Res Clin Oncol 128: 503–506

    Article  CAS  PubMed  Google Scholar 

  78. Yeh SD, Imbriaco M, Larson SM (1996) Detection of bony metastases of androgen independent prostate cancer by PET-FDG. Nucl Med Biol 23: 693–697

    Article  CAS  PubMed  Google Scholar 

  79. Yoshimoto M, Waki A, Yonekura Y et al. (2001) Characterization of acetate metabolism in tumor cells in relation to cell proliferation: acetate metabolism in tumor cells. Nucl Med Biol 28:117–122

    Article  CAS  PubMed  Google Scholar 

Download references

Interessenkonflikt:

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Machtens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Machtens, S., Boerner, A.R., Hofmann, M. et al. Positronenemissionstomographie (PET) zur Diagnostik und zum Therapiemonitoring bei urologischen Tumoren. Urologe [A] 43, 1397–1409 (2004). https://doi.org/10.1007/s00120-004-0714-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00120-004-0714-3

Schlüsselwörter

Keywords

Navigation