Skip to main content
Log in

Tissue engineering in der Urologie

Prinzipien und Anwendung

  • Leitthema
  • Published:
Der Urologe, Ausgabe A Aims and scope Submit manuscript

Zusammenfassung

"Tissue engineering" stellt ein relativ junges Forschungsgebiet dar. Trotz der kurzen Zeit konnten experimentelle Untersuchungen bereits in klinischen Studien angewendet werden. Im Vergleich zu anderen Fachgebieten ist das Gebiet des "Tissue engineerings" in der Urologie gut entwickelt: Tissue-engineerte "Bulking agents" und tissue-engineertes Blasengewebe zur Blasenaugmentation werden in klinischen Studien geprüft. Für viele andere Gewebearten aus dem Fachbereich der Urologie wurden tissue-engineerte Konstrukte in Tierversuchen geprüft. Auch wenn die Ergebnisse der letzten Jahre viel versprechend sind, bedarf es einer kritischen Prüfung hinsichtlich der klinischen Anwendung dieser neuen Zelltherapien.

Das "Tissue engineering" wurde in den letzten 2 Jahren durch die Ergebnisse des "Genetic engineerings" und der Stammzellforschung (adulte Stammzellen) stark beeinflusst. Mithilfe des "Genetic engineerings" können biochemische und funktionelle Eigenschaften von tissue-engineertem Gewebe modifiziert werden; durch die adulte Stammzellforschung soll es in Zukunft möglich sein, undifferenzierte Zellen—von autologem adultem Gewebe isoliert—in verschiedene Zelltypen des Körpers zu differenzieren. Mit dieser Methode sollte es auch möglich werden, funktionelles Gewebe zu entwickeln, das zum Ersatz von Organteilen und Organen des Körpers verwendet werden kann.

Abstract

Tissue engineering is a rather new field of science. Despite this fact, some experimental investigations have already been applied in clinical studies. Compared to other medical fields, tissue engineering in urology is well established. Tissue-engineered bulking agents and tissue-engineered bladder augments are being investigated in clinical trials. Even though the knowledge gained in recent years is promising, the results of cellular therapies need to be critically judged before being finally applied in patients.

Genetic engineering and stem cell research (adult undifferentiated cells) have had major impact on the field of tissue engineering over the past 2 years. By using the technology of genetic engineering, biochemical and functional qualities of tissues may be modified. Adult stem cells may help to substitute lost tissue in an autologous fashion by isolating undifferentiated cells from the body and by differentiating them into a desired cell type. These cells may be used to form native functional tissue to replace a diseased organ or organ part.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1.
Abb. 2.
Abb. 3.
Abb. 4.
Abb. 5a–c.
Abb. 6a–c.
Abb. 7.
Abb. 8.
Abb. 9a–d.
Abb. 10.
Abb. 11a–c.
Abb. 12a, b.
Abb. 13a–c.
Abb. 14.

Literatur

  1. Atala A (2000) Tissue engineering of artificial organs. J Endourol 14: 49–57

    Google Scholar 

  2. Skalak R, Fox CF (1988) Tissue engineering. Liss, New York

  3. Karmiol S (2002) Cell isolation and selection. In: Atala A, Lanza RP (eds) Methods of tissue engineering. Academic Press, San Diego, pp 19–35

  4. Pretlow TG, Pretlow TP (1989) Cell separation by gradient centrifugation methods. Methods Enzymol 171: 1471–1476

    Google Scholar 

  5. Pertoft H (2000) Fractionation of cells and subcellular particles with Percoll. J Biochem Biophys Methods 44: 1–30

    Google Scholar 

  6. Carter NP (1994) Flow sorting. In: Ormerod MG (ed) Flow cytometry: A practical approach, 2nd edn. Oxford University Press, Oxford, pp 55–65

  7. Lee CS, Patton WF, Chung-Welch N, Chiang ET, Spofford KH, Shepro D (1998) Selective propagation of retinal pericytes in mixed microvascular cell cultures using L-leucine-methyl ester. Biotechniques 25: 482–488

    Google Scholar 

  8. Frauli M, Ludwig H (1987) Inhibition of fibroblast proliferation in a culture of human endometrial stromal cells using a medium containing D-valine. Arch Gynecol Obstet 241: 87–96

    Google Scholar 

  9. Kim BS, Baez CE, Atala A (2000) Biomaterials for tissue engineering. World J Urol 18: 2–9

    Google Scholar 

  10. Li ST (1995) Biologic Materials: tissue-derived biomaterials (collagen) In: J.D. Brozino (ed) The biomedical engineering handbook. Boca Raton, Florida, pp 627–647

  11. Furthmayr H, Timpl R (1976) Immunochemistry of collagens and procollagens. Int Rev Connect Tissue Res 7: 61–99

    Google Scholar 

  12. Hendren WH, Reda EF (1986) Bladder mucosa graft for construction of male urethra. J Pediatr Surg 21: 189–192

    Google Scholar 

  13. Freed, LE, Vunjak-Novakovic G, Biron RJ, Eagles DB, Lesnoy DC, Barlow SK, Langer R (1994) Biodegradable polymer scaffolds for tissue engineering. Biotechnology (NY) 12: 689–693

  14. Harris, LD, Kim BS, Mooney DJ (1998) Open pore biodegradable matrices formed with gas foaming. J Biomed Mater Res 42: 396–402

    Google Scholar 

  15. Gilding DK (1981) Biogedradable polymers. In: Williams DF (ed) Biocompatibility of clinical implant materials. Boca Raton, Florida, pp 209–232

  16. Kuhtreiber WM, Chick WL, Lanza RP (2001) Cell encapsulation technology and therapeutics. Springer, Berlin Heidelberg New York Tokio

  17. Loebsack A, Greene K, Wyatt S et al. (2001) In vivo characterization of a porous hydrogel material for use as a tissue bulking agent. J Biomed Mater Res 57: 575–581

    Google Scholar 

  18. Chang TM (1997) Artificial cells and bioencapsulation in bioartificial organs. Ann NY Acad Sci 831: 249–259

    Google Scholar 

  19. Uludag H, De Vos P, Tresco PA (2000) Technology of mammalian cell encapsulation. Adv Drug Deliv Rev 42: 29–64

    Google Scholar 

  20. Machluf M, Orsola A, Atala A (2000) Controlled release of therapeutic agents: slow delivery and cell encapsulation. World J Urol 18: 80–83

    Google Scholar 

  21. Folkman J, Hochberg M (1973) Self-regulation of growth in three dimensions. J Exp Med 138: 745–753

    Google Scholar 

  22. Nomi M, Atala A, De Coppi P, Soker S (2002) Principals of neovascularization for tissue engineering. Mol Aspects Med 23: 463

    Google Scholar 

  23. Richardson TP, Peters MC, Ennett AB, Mooney DJ (2001) Polymeric system for dual growth factor delivery. Nat Biotechnol 19: 1029–1034

    Google Scholar 

  24. Soker S, Machado M, Atala A (2000) Systems for therapeutic angiogenesis in tissue engineering. World J Urol 18: 10–18

    Google Scholar 

  25. Pepper MS (1997) Transforming growth factor-beta: vasculogenesis, angiogenesis, and vessel wall integrity. Cytokine Growth Factor Rev 81: 21–43

    Google Scholar 

  26. Davis S, Yancopoulos GD (1999) The angiopoietins: yin and yang in angiogenesis. Curr Top Microbiol Immunol 237: 173–185

    Google Scholar 

  27. Shamblott MJ, Axelman J, Wang S et al. (1998) Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sci USA 95: 13726–13731

    Google Scholar 

  28. Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 78: 7634–7638

    Google Scholar 

  29. Reubinoff BE, Pera MF, Fong CY, Trounson A, Bongso A (2000) Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol 18: 399–404

    Google Scholar 

  30. Pittenger MF, Mackay AM, Beck SC et al. (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284: 143–147

    Google Scholar 

  31. Angele P, Kujat R, Nerlich M, Yoo J, Goldberg V, Johnstone B (1999) Engineering of osteochondral tissue with bone marrow mesenchymal progenitor cells in a derivatized hyaluronan-gelatin composite sponge. Tissue Eng 5: 545–554

    Google Scholar 

  32. Jiang Y, Jahagirdar BN, Reinhardt RL et al. (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418: 41–49

    Google Scholar 

  33. Lee JY, Qu-Petersen Z, Cao B et al. (2000) Clonal isolation of muscle-derived cells capable of enhancing muscle regeneration and bone healing. J Cell Biol 150: 1085–1100

    Google Scholar 

  34. Bosch P, Musgrave DS, Lee JY et al. (2000) Osteoprogenitor cells within skeletal muscle. J Orthop Res 18: 933–944

    Google Scholar 

  35. Zuk PA, Zhu M, Mizuno H et al. (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7: 211–228

    Google Scholar 

  36. Toma JG, Akhavan M, Fernandes KJ et al. (2001) Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol 3: 778–784

    Google Scholar 

  37. Bartsch G Jr., Yoo JJ, De Coppi P et al. (2002) Dermal stem cells for pelvic and bladder. Reconstruction. J Urol 163 [Suppl 4]: 181

  38. De Bari C, Dell'Accio F, Tylzanowski P, Luyte FP (2001) Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum 44: 1928–1942

    Google Scholar 

  39. Kelami A (1971) Lyophilized human dura as a bladder wall substitute: experimental and clinical results. J Urol 105: 518–522

    Google Scholar 

  40. Kelami A, Dustmann HO, Ludtke-Handjery A, Carcamo V, Herlld G (1970) Experimental investigations of bladder regeneration using teflon-felt as a bladder wall substitute. J Urol 104: 693–698

    Google Scholar 

  41. Cilento BG, Freeman MR, Schneck FX, Retik AB, Atala A (1994) Phenotypic and cytogenetic characterization of human bladder urothelia expanded in vitro. J Urol 152: 665–670

    Google Scholar 

  42. Atala A, Freeman MR, Vacanti JP, Shepard J, Retik AB (1993) Implantation in vivo and retrieval of artificial structures consisting of rabbit and human urothelium and human bladder muscle. J Urol 150: 608–612

    Google Scholar 

  43. Atala A, Vacanti JP, Peters CA, Mandell J, Retik AB, Freeman MR (1992) Formation of urothelial structures in vivo from dissociated cells attached to biodegradable polymer scaffolds in vitro. J Urol 148: 658–662

    Google Scholar 

  44. Oberpenning F, Meng J, Yoo JJ, Atala A (1999) De novo reconstitution of a functional mammalian urinary bladder by tissue engineering. Nat Biotechnol 17: 149–155

    Google Scholar 

  45. Kropp BP, Rippy MK, Badylak SF et al. (1996) Regenerative urinary bladder augmentation using small intestinal submucosa: urodynamic and histopathologic assessment in long-term canine bladder augmentations J Urol 155: 2098–2104

  46. Cayan S, Chermansky C, Schlote N et al. (2002) The bladder acellular matrix graft in a rat chemical cystitis model: functional and histologic evaluation. J Urol 168: 798–804

    Google Scholar 

  47. Probst M, Piechota HJ, Dahiya R, Tanagho EA (2000) Homologous bladder augmentation in dog with the bladder acellular matrix graft. BJU Int 85: 362–371

    Google Scholar 

  48. Yoo JJ, Meng J, Oberpenning F, Atala A (1998) Bladder augmentation using allogenic bladder submucosa seeded with cells. Urology 51: 221–225

    Google Scholar 

  49. Lai JY, Yoo JJ, Atala A (2002) Bladder augmentation using small intestinal submucosa seeded with cells. J Urol 167 [Suppl 4]: 257

    Google Scholar 

  50. Lai JY, Yoon CY, Yoo JJ, Wulf T, Atala A (2002) Phenotypic and functional characterization of in vivo tissue engineered smooth muscle from normal and pathological bladders. J Urol 168: 1853–1857

    Google Scholar 

  51. Cilento BG, Retik AB, Atala A (1995) Urethral reconstruction using a polymer mesh. J Urol A 153: 371

    Google Scholar 

  52. De Filippo RE, Yoo JJ, Atala A (2002) Urethral replacement using cell seeded tubularized collagen matrices. J Urol 168: 1789–1792

    Google Scholar 

  53. Chen F, Yoo JJ, Atala A (1999) Acellular collagen matrix as a possible "off the shelf" biomaterial for urethral repair. Urology 54: 407–410

    Google Scholar 

  54. Kassaby EA, Yoo JJ, Retik AB, Atala A (2000) A novel inert collagen matrix for urethral stricture repair. J Urol A 163: 308

    Google Scholar 

  55. Amiel GE, Yoo JJ, Atala A (2000) Renal therapy using tissue-engineered constructs and gene delivery. World J Urol 18: 71–79

    Google Scholar 

  56. Atala A, Schlussel RN, Retik AB (1995) Renal cell growth in vivo after attachment to biodegradable polymer scaffolds. J Urol 153 [suppl]: 4

    Google Scholar 

  57. Yoo JJ, Ashkar S, Atala A (1996) Creation of functional kidney structures with excretion of urine-like fluid in vivo. Pediatrics 98: 605

    Google Scholar 

  58. Cieslinski DA, Humes HD (1994) Tissue engineering of a bioartificial kidney. Biotech Bioeng 43: 678

    Google Scholar 

  59. Kershen RT, Fefer SD, Atala A (2000) Tissue-engineered therapies for the treatment of urinary incontinence and vesicoureteral reflux. World J Urol 18: 51–55

    Google Scholar 

  60. Malizia AA Jr, Reiman HM, Myers RP et al. (1984) Migration and granulomatous reaction after periurethral injection of polytef (Teflon). JAMA 251: 3277–3281

    Google Scholar 

  61. Frey P, Lutz N, Jenny P, Herzog B (1995) Endoscopic subureteral collagen injection for the treatment of vesicoureteral reflux in infants and children. J Urol 154: 804–807

    Google Scholar 

  62. Atala A, Cima LG, Kim W, Paige KT, Vacanti JP, Retik AB (1993) Injectable alginate seeded with chondrocytes as a potential treatment for vesicoureteral reflux. J Urol 150: 745–747

    Google Scholar 

  63. Atala A, Kim W, Paige KT, Vacanti CA, Retik AB (1994) Endoscopic treatment of vesicoureteral reflux with a chondrocyte-alginate suspension. J Urol 152: 641–643

    Google Scholar 

  64. Diamond DA, Caldamone AA (1998) Endoscopic tratment of vesicoureteric reflux in children using autologous chondrocytes—preliminary results. Pediatrics A 102:107

    Google Scholar 

  65. Atala A, Cilento BG, Paige KT, Retik AB (1994) Injectable alginate seeded with human bladder muscle cells as a potential treatment for vesicoureteral reflux. J Urol A 151: 362

    Google Scholar 

  66. Huard J, Yokohama N, Groat WC de, Qu Z, Chancellor MB (1999) Differentiation of primary myoblast injection into the lower urinary tract; creation of detrusor cellular myoplasty. J Urol 161: 66

    Google Scholar 

  67. Yokoyama T, Chancellor MB, Watanabe T et al. (1999) Primary myoblast injection into the urethra and bladder as a potential treatment of stress urinary incontinence and impaired detrusor contractility; long term survival without significant cytotoxicity. J Urol 161: 307

    Google Scholar 

  68. Strasser H, Marksteiner R, Magreiter E et al. (2001) Transurethral ultrasound guided injection of clonally cultured autologous myoblasts: first experimental results. J Urol A 165: 33

    Google Scholar 

  69. Kershen RT, Yoo JJ, Moreland RB, Krane RJ, Atala A (1998) Novel system for the formation of human corpus cavernosum smooth muscle tissue in vivo. J Urol 159 [Suppl]: 156

  70. Park HJ, Yoo JJ, Kershen RT, Moreland R, Atala A (1999) Reconstitution of human corporal smooth muscle and endothelial cells in vivo. J Urol 162: 1106–1109

    Google Scholar 

  71. Kwon TG, Yoo JJ, Atala A (2002) Autologous penile corpora cavernosa replacement using tissue engineering techniques. J Urol 168: 1754–1758

    Google Scholar 

  72. Yoo JJ, Lee I, Atala A (1998) Cartilage rods as a potential material for penile reconstruction. J Urol 160: 1164–1168

    Google Scholar 

  73. Yoo JJ, Park HJ, Lee I, Atala A (1999) Autologous engineered cartilage rods for penile reconstruction. J Urol 162: 1119–1121

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Bartsch, Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartsch, Jr., G., Atala, A. Tissue engineering in der Urologie. Urologe [A] 42, 354–365 (2003). https://doi.org/10.1007/s00120-003-0304-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00120-003-0304-9

Schlüsselwörter

Keywords

Navigation