Skip to main content
Log in

Diagnostik und Therapie der diabetischen Nephropathie

  • Weiter- und Fortbildung
  • Published:
Der Urologe, Ausgabe A Aims and scope Submit manuscript

Zusammenfassung

In Deutschland haben bereits 36% aller neuen chronischen Dialysepatienten ursächlich eine diabetische Nephropathie als renale Grunderkrankung. Die meisten dieser Patienten sind Typ-2-Diabetiker. Insgesamt verursacht die überhöhte Morbidität und Mortalität dieser Patienten eine erhebliche Kostenbelastung für das deutsche Gesundheitswesen.

Ziel sollte es daher sein, die diabetische Nephropathie sehr früh zu erkennen, da Interventionen in einem sehr frühen Stadium den größten therapeutischen Effekt haben. Eine beginnende Nephropathie ist durch den Nachweis einer Mikroalbuminurie zu diagnostizieren (30–300 mg Albumin/g Kreatinin im Spontanurin). Diese Untersuchung sollte jährlich erfolgen (bei Typ-2-Diabetikern sofort nach Diagnosestellung des Diabetes, bei Typ-1-Diabetikern beginnend nach 5 Jahren). Der Nachweis einer Proteinurie mit dem Standardteststreifen (Albuminurie >300 mg/g Kreatinin) zeigt eine manifeste Nephropathie an, in deren Verlauf es zur progredienten Einschränkung der Nierenfunktion kommt. Wichtige beeinflussbare Kofaktoren für die Progression sind: arterielle Hypertonie, Blutzuckereinstellung, Rauchen und Fettstoffwechselstörungen.

Eine Einstellung der Diabetiker auf niedrig normale Blutdruckwerte (<130/80 mmHg ohne Proteinurie, <125/75 mmHg mit Proteinurie) auf der Basis von ACE-Hemmern (bewiesen für Typ-1-Diabetiker) oder Angiotensinrezeptorblockern (bewiesen für Typ-2-Diabetiker) sollte erfolgen. Kombinationstherapien (günstig mit Diuretika, Betablockern und Non-Diyhydropyridincalciumantagonisten) sind häufig erforderlich. Durch frühe therapeutische Maßnahmen ist das Stadium der Mikroalbuminurie in vielen Fällen rückgängig zu machen.

Bei fortschreitender Niereninsuffizienz sind besondere Therapiemaßnahmen sinnvoll (Knochelstoffwechsel, Anämie, Azidose, Meiden von nephrotoxischen Medikamenten). Eine frühzeitige Einleitung der Nierenersatztherapie bei Diabetikern (bei etwa einer GFR <15 ml/min) verkürzt stationäre Aufenthalte und vermindert die Ein- und Zweijahresmortalität. Neben Hämodialyse und Peritonealdialyse ist v. a. eine frühe Nierentransplantation und bei Typ-1-Diabetikern in Einzelfällen auch eine kombinierte Nieren-/Pankreastransplantation sinnvoll.

Abstract

In Germany, 36% of all new chronic dialysis patients have diabetic nephropathy as the causative renal disease. The majority of these patients are type 2 diabetics. The excessive morbidity and mortality of these patients represent a considerable cost factor for the German health care system.

The goal should thus be to recognize diabetic nephropathy very early since intervention during the early stage has the greatest therapeutic effect. Incipient nephropathy can be diagnosed by evidence of microalbuminuria (30–300 mg albumin/g creatinine in spontaneous urine). This test should be performed annually (in type 2 diabetics immediately following diagnosis of the diabetes and in type 1 diabetics commencing after 5 years). Evidence for proteinuria on the standard test strip (albuminuria >300 mg/g creatinine) indicates manifest nephropathy and leads during its course to progressive impairment of renal function. Important influenceable cofactors for progression are arterial hypertension, blood sugar management, smoking, and dyslipidosis.

The diabetic patient should be kept at low normal blood pressure levels (<130/80 mmHg without proteinuria and <125/75 mmHg with proteinuria) with ACE inhibitors (proven for type 1 diabetics) or angiotensin receptor blockers (proven for type 2 diabetics). Combination therapies (beneficial with diuretics, beta blockers, and non-dihydropyridine calcium antagonists) are frequently necessary. Early therapeutic intervention can in many cases reverse the stage of microalbuminuria.

Special therapeutic measures are judicious for progressive renal insufficiency (osseous metabolism, anemia, acidosis, avoidance of nephrotoxic medications). Timely initiation of renal replacement therapy in diabetics (GFR at approximately <15 ml/min) shortens hospital stay and reduces the 1- and 2-year mortality rates. In addition to hemodialysis and peritoneal dialysis, early kidney transplantation in particular is appropriate and in individual cases in type 1 diabetics combined kidney and pancreas transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1.

Literatur

  1. Frei U, Schober-Halstenberg HJ (2001) Nierenersatztherapie in Deutschland, Bericht über Dialysebehandlung und Nierentransplantation in Deutschland 2000. QuaSi Niere, Berlin, S 1–65

  2. United States Renal Data System (2002) USRDS 2001 annual data report. National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Md.

  3. Mogensen CE, Hansen KW, Nielsen S, Pedersen MM, Rehling M, Schmitz A (1993) Monitoring diabetic nephropathy: glomerular filtration rate and abnormal albuminuria in diabetic renal disease--reproducibility, progression, and efficacy of antihypertensive intervention. Am J Kidney Dis 22: 174–187

    Google Scholar 

  4. Ritz E, Orth SR (1999) Nephropathy in patients with type 2 diabetes mellitus. N Engl J Med 341: 1127–1133

    Google Scholar 

  5. Ritz E, Stefanski A (1996) Diabetic nephropathy in type II diabetes. Am J Kidney Dis 27: 167–194

    Google Scholar 

  6. Parving HH (2001) Diabetic nephropathy: prevention and treatment. Kidney Int 60: 2041–2055

    Google Scholar 

  7. Hasslacher C, Ritz E, Wahl P, Michael C (1989) Similar risks of nephropathy in patients with type I or type II diabetes mellitus. Nephrol Dial Transplant 4: 859–863

    Google Scholar 

  8. Mogensen CE (2001) The kidney in diabetes: how to control renal and related cardiovascular complications. Am J Kidney Dis 37: 2–6

    Google Scholar 

  9. Mogensen CE, Keane WF, Bennett PH et al. (1995) Prevention of diabetic renal disease with special reference to microalbuminuria. Lancet 346: 1080–1084

    Google Scholar 

  10. Wachtell K, Olsen MH, Dahlof B et al. (2002) Microalbuminuria in hypertensive patients with electrocardiographic left ventricular hypertrophy: the LIFE study. J Hypertens 20: 405–412

    Google Scholar 

  11. Wachtell K, Palmieri V, Olsen MH et al. (2002) Urine albumin/creatinine ratio and echocardiographic left ventricular structure and function in hypertensive patients with electrocardiographic left ventricular hypertrophy: the LIFE study. Losartan Intervention for Endpoint Reduction. Am Heart J 143: 319–326

    Google Scholar 

  12. Remuzzi G, Schieppati A, Ruggenenti P (2002) Clinical practice. Nephropathy in patients with type 2 diabetes. N Engl J Med 346: 1145–1151

    Google Scholar 

  13. Fried LF, Orchard TJ, Kasiske BL (2001) Effect of lipid reduction on the progression of renal disease: a meta-analysis. Kidney Int 59: 260–269

    Google Scholar 

  14. Eshoj O, Feldt-Rasmussen B, Larsen ML, Mogensen EF (1987) Comparison of overnight, morning and 24-hour urine collections in the assessment of diabetic microalbuminuria. Diabet Med 4: 531–533

    Google Scholar 

  15. Ruggenenti P, Remuzzi G (1997) The diagnosis of renal involvement in non-insulin-dependent diabetes mellitus. Curr Opin Nephrol Hypertens 6: 141–145

    Google Scholar 

  16. The Diabetes Control and Complications Trial Research Group (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 329: 977–986

    Google Scholar 

  17. UK Prospective Diabetes Study (UKPDS) Group (1998) Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 352: 854–865

    Google Scholar 

  18. UK Prospective Diabetes Study (UKPDS) Group (1998) Intensive bloodglucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352: 837–853

    Google Scholar 

  19. Eriksson H, Welin L, Wilhelmsen L, Larsson B, Ohlson LO, Svardsudd K, Tibblin G (1992) Metabolic disturbances in hypertension: results from the population study men born in 1913. J Intern Med 232: 389–395

    Google Scholar 

  20. Lender D, Arauz-Pacheco C, Adams-Huet B, Raskin P (1997) Essential hypertension is associated with decreased insulin clearance and insulin resistance. Hypertension 29: 111–114

    Google Scholar 

  21. Resnick LM (1992) Cellular ions in hypertension, insulin resistance, obesity, and diabetes: a unifying theme. J Am Soc Nephrol 3: 78–85

    Google Scholar 

  22. de Chatel R, Weidmann P, Flammer J, Ziegler WH, Beretta-Piccoli C, Vetter W, Reubi FC (1977) Sodium, renin, aldosterone, catecholamines, and blood pressure in diabetes mellitus. Kidney Int 12: 412–421

    Google Scholar 

  23. Feldt-Rasmussen B, Mathiesen ER, Deckert T, Giese J, Christensen NJ, Bent-Hansen L, Nielsen MD (1987) Central role for sodium in the pathogenesis of blood pressure changes independent of angiotensin, aldosterone and catecholamines in type 1 (insulin-dependent) diabetes mellitus. Diabetologia 30: 610–617

    Google Scholar 

  24. Ferrannini E, Buzzigoli G, Bonadonna R et al. (1987) Insulin resistance in essential hypertension. N Engl J Med 317: 350–357

    Google Scholar 

  25. Laakso M, Edelman SV, Brechtel G, Baron AD (1990) Decreased effect of insulin to stimulate skeletal muscle blood flow in obese man. A novel mechanism for insulin resistance. J Clin Invest 85: 1844–1852

    Google Scholar 

  26. Mogensen CE (1982) Long-term antihypertensive treatment inhibiting progression of diabetic nephropathy. Br Med J 285: 685–688

    Google Scholar 

  27. Staessen J, Fagard R, Lijnen P, Amery A (1989) Body weight, sodium intake and blood pressure. J Hypertens 7 [Suppl]: 19–23

    Google Scholar 

  28. Cutler JA, Follmann D, Allender PS (1997) Randomized trials of sodium reduction: an overview. Am J Clin Nutr 65: 643–651

    Google Scholar 

  29. UK Prospective Diabetes Study Group (1998) Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. BMJ 317: 703–713

    Google Scholar 

  30. Hansson L, Zanchetti A, Carruthers SG, Dahlof B, Elmfeldt D, Julius S, Menard J, Rahn KH, Wedel H, Westerling S (1998) Effects of intensive blood-pressure lowering and low-dose aspirin in patients with hypertension: principal results of the Hypertension Optimal Treatment (HOT) randomised trial. HOT Study Group. Lancet 351: 1755–1762

    Google Scholar 

  31. Tuomilehto J, Rastenyte D, Birkenhager WH et al. (1999) Effects of calcium-channel blockade in older patients with diabetes and systolic hypertension. Systolic Hypertension in Europe Trial Investigators. N Engl J Med 340: 677–684

    Google Scholar 

  32. The sixth report of the Joint National Committee on prevention, detection, evaluation, and treatment of high blood pressure (1997). Arch Intern Med 157: 2413–2446

  33. Lewis EJ, Hunsicker LG, Bain RP, Rohde RD (1993) The effect of angiotensin- converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N Engl J Med 329: 1456–1462

    Google Scholar 

  34. The ACE Inhibitors in Diabetic Nephropathy Trialist Group (2001) Should all patients with type 1 diabetes mellitus and microalbuminuria receive angiotensin- converting enzyme inhibitors? A meta-analysis of individual patient data. Ann Intern Med 134: 370–379

    Google Scholar 

  35. UK Prospective Diabetes Study Group (1998) Efficacy of atenolol and captopril in reducing risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 39. BMJ 317: 713–720

    Google Scholar 

  36. Bakris GL, Copley JB, Vicknair N, Sadler R, Leurgans S (1996) Calcium channel blockers vs. other antihypertensive therapies on progression of NIDDM associated nephropathy. Kidney Int 50: 1641–1650

    Google Scholar 

  37. Bakris GL (1991) Renal effects of calcium antagonists in diabetes mellitus. An overview of studies in animal models and in humans. Am J Hypertens 4: 487–493

    Google Scholar 

  38. Heart Outcomes Prevention Evaluation Study Investigators (2000) Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICRO-HOPE substudy. Lancet 355: 253–259

    Google Scholar 

  39. Parving HH, Lehnert H, Brochner-Mortensen J, Gomis R, Andersen S, Arner P (2001) The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N Engl J Med 345: 870–878

    Google Scholar 

  40. Lewis EJ, Hunsicker LG, Clarke WR et al. (2001) Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med 345: 851–860

    Google Scholar 

  41. Brenner BM, Cooper ME, de Zd et al. (2001) Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med 345: 861–869

  42. Lindholm LH, Ibsen H, Dahlof B et al. (2002) Cardiovascular morbidity and mortality in patients with diabetes in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet 359: 1004–1010

    Google Scholar 

  43. Dahlof B, Devereux RB, Kjeldsen SE et al. (2002) Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet 359: 995–1003

    Google Scholar 

  44. Mogensen CE, Neldam S, Tikkanen I, Oren S, Viskoper R, Watts RW, Cooper ME (2000) Randomised controlled trial of dual blockade of reninangiotensin system in patients with hypertension, microalbuminuria, and non-insulin dependent diabetes: the candesartan and lisinopril microalbuminuria (CALM) study. BMJ 321: 1440–1444

    Google Scholar 

  45. Zeller K, Whittaker E, Sullivan L, Raskin P, Jacobson HR (1991) Effect of restricting dietary protein on the progression of renal failure in patients with insulin-dependent diabetes mellitus. N Engl J Med 324: 78–84

    Google Scholar 

  46. MDRD Investigators (1996) Effects of dietary protein restriction on the progression of moderate renal disease in the Modification of Diet in Renal Disease Study. J Am Soc Nephrol 7: 2616–2626

    Google Scholar 

  47. MDRD Investigators (1996) Effects of diet and antihypertensive therapy on creatinine clearance and serum creatinine concentration in the Modification of Diet in Renal Disease Study. J Am Soc Nephrol 7: 556–566

    Google Scholar 

  48. Khan IH, Catto GR, Edward N, MacLeod AM (1995) Death during the first 90 days of dialysis: a case control study. Am J Kidney Dis 25: 276–280

    Google Scholar 

  49. Haire-Joshu D, Glasgow RE, Tibbs TL (1999) Smoking and diabetes. Diabetes Care 22: 1887–1898

    Google Scholar 

  50. Muhlhauser I, Sawicki P, Berger M (1986) Cigarette-smoking as a risk factor for macroproteinuria and proliferative retinopathy in type 1 (insulindependent) diabetes. Diabetologia 29: 500–502

    Google Scholar 

  51. Ritz E, Ogata H, Orth SR (2000) Smoking: a factor promoting onset and progression of diabetic nephropathy. Diabetes Metab 26 [Suppl 4]: 54–63

  52. Block GA, Hulbert-Shearon TE, Levin NW, Port FK (1998) Association of serum phosphorus and calcium x phosphate product with mortality risk in chronic hemodialysis patients: a national study. Am J Kidney Dis 31: 607–617

    Google Scholar 

  53. Dikow R, Schwenger V, Schomig M, Ritz E (2002) How should we manage anaemia in patients with diabetes? Nephrol Dial Transplant 17 [Suppl 1]: 67–72

  54. Eckardt KU (2001) Anaemia in end-stage renal disease: pathophysiological considerations. Nephrol Dial Transplant 16 [Suppl 7]: 2–8

    Google Scholar 

  55. Vaziri ND (2001) Cardiovascular effects of erythropoietin and anemia correction. Curr Opin Nephrol Hypertens 10: 633–637

    Google Scholar 

  56. Tepel M, van der Giet M, Schwarzfeld C, Laufer U, Liermann D, Zidek W (2000) Prevention of radiographic-contrast-agent-induced reductions in renal function by acetylcysteine. N Engl J Med 343: 180–184

    Google Scholar 

  57. Scolari F, Tardanico R, Zani R, Pola A, Viola BF, Movilli E, Maiorca R (2000) Cholesterol crystal embolism: A recognizable cause of renal disease. Am J Kidney Dis 36: 1089–1109

    Google Scholar 

  58. Keshaviah P, Collins AJ, Ma JZ, Churchill DN, Thorpe KE (2002) Survival comparison between hemodialysis and peritoneal dialysis based on matched doses of delivered therapy. J Am Soc Nephrol 13 [Suppl 1]: 48–52

    Google Scholar 

  59. Friedman AL (2001) Appropriateness and timing of kidney and/or pancreas transplants in type 1 and type 2 diabetes. Adv Ren Replace Ther 8: 70–82

    Google Scholar 

  60. Robertson RP, Davis C, Larsen J, Stratta R, Sutherland DE (2000) Pancreas and islet transplantation for patients with diabetes. Diabetes Care 23: 112–116

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Wrenger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wrenger, E., Neumann, K.H. & Lehnert, H. Diagnostik und Therapie der diabetischen Nephropathie. Urologe [A] 42, 269–286 (2003). https://doi.org/10.1007/s00120-002-0292-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00120-002-0292-1

Schlüsselwörter

Keywords

Navigation