Skip to main content
Log in

Das Prostatakarzinom-Screening – aktueller Überblick

Prostate cancer screening—current overview

  • Leitthema
  • Published:
Die Radiologie Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Der Mehrwert des Prostatakrebsscreenings wird kontrovers diskutiert – vor allem im Hinblick auf die geringe Spezifität der Testung auf prostataspezifisches Antigen (PSA).

Methoden

In dieser nichtsystematischen Übersicht präsentieren wir einen aktuellen Überblick über die Evidenz zum Prostatakrebs-Screening mit Fokus auf der Rolle der Magnetresonanztomographie (MRT) der Prostata.

Ergebnisse

Große randomisierte kontrollierte Studien haben gezeigt, dass ein PSA-basiertes Screening die krebsspezifische Sterblichkeit signifikant senkt. Das Problem bei der Entwicklung und Einführung von Prostatakrebs-Screening-Strategien ist aber die daraus resultierende Überdiagnose und in der Folge die Überbehandlung indolenter Karzinome. So ist das opportunistische Screening durch ein ungünstiges Nutzen-Schaden-Verhältnis gekennzeichnet und sollte nicht empfohlen werden. Das deutsche „Gesetzliche Früherkennungsprogramm“ für Prostatakrebs, das aus einer digitalen rektalen Untersuchung (DRU) als eigenständigem Screening-Test besteht, ist nicht evidenzbasiert und weder spezifisch noch sensitiv genug. Die Europäische Kommission hat nun die Mitgliedstaaten dazu aufgerufen, bevölkerungsbezogene, organisierte und risikoangepasste PSA-basierte Screeningstrategien unter Integration der MRT-Bildgebung zu entwickeln, wie sie auch in Deutschland in der laufenden deutschen PROBASE-Studie getestet werden. Die Feinjustierung des diagnostischen Weges nach der PSA-Testung scheint der Schlüsselfaktor zu sein, um den positiven wie auch negativen Vorhersagewert zu verbessern und damit das Prostatakrebs-Screening treffsicherer zu machen. Die Aufnahme der Prostata-MRT in Screeningstrategien führt zu einer genaueren Diagnose von klinisch bedeutsamem Prostatakrebs, während weniger Karzinome mit niedrigem Risiko entdeckt werden. In Zukunft könnten molekulare Biomarker im Blut oder Urin das PSA bei der Prostatakrebsfrühdetektion ergänzen oder sogar ersetzen und das Screening weiter personalisieren. Die aktive Überwachung als Alternative zur sofortigen aktiven Therapie der demografisch zunehmenden Prostatakrebsdiagnosen kann potenziell das Nutzen-Schadensverhältnis eines organisierten Screenings weiter verbessern.

Schlussfolgerung

Die Früherkennung des Prostatakarzinoms sollte organisiert auf Bevölkerungsebene in personalisierten und evidenzbasierten Screeningstrategien gestaltet werden. Die multiparametrische MRT der Prostata kann hier eine wichtige Rolle einnehmen.

Abstract

Background

The harm-to-benefit ratio of prostate cancer (PCa) screening remains controversial mainly due to the unfavorable test characteristics of prostate-specific antigen (PSA) as a screening test.

Methods

In this nonsystematic review, we present a current overview of the body of evidence on prostate cancer screening with a focus on the role of magnetic resonance imaging (MRI) of the prostate.

Results

Evidence generated in large randomized controlled trials showed that PSA-based screening significantly decreases cancer-specific mortality. The main obstacle in developing and implementing PCa screening strategies is the resulting overdiagnosis and as a consequence overtreatment of indolent cancers. Opportunistic screening is characterized by an adverse benefit-to-harm ratio and should, therefore, not be recommended. The German Statutory Early Detection Program for prostate cancer, which consists of a digital rectal examination (DRE) as a stand-alone screening test, is not evidence-based, neither specific nor sensitive enough and results in unnecessary diagnostics. The European Commission recently urged member states to develop population-based and organized risk-adapted PSA-based screening programs, which are currently tested in the ongoing German PROBASE trial. Finetuning of the diagnostic pathway following PSA-testing seems key to improve its positive and negative predictive value and thereby making PCa screening more accurate. Incorporation of prostatic MRI into screening strategies leads to more accurate diagnosis of clinically significant prostate cancer, while diagnosis of indolent cancers is reduced. In the future, molecular liquid-based biomarkers have the potential to complement or even replace PSA in PCa screening and further personalize screening strategies. Active surveillance as an alternative to immediate radical therapy of demographically increasing PCa diagnoses can potentially further improve the benefit-to-harm ratio of organized screening.

Conclusion

Early detection of PCa should be organized on a population level into personalized and evidence-based screening strategies. Multiparametric MRI of the prostate may play a key role in this setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Institut RKI (2021) Krebs Deutschl 2018(2017)

  2. Bell KJ et al (2015) Prevalence of incidental prostate cancer: A systematic review of autopsy studies. Int J Cancer 137(7):1749–1757

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Ilic D et al (2018) Prostate cancer screening with prostate-specific antigen (PSA) test: a systematic review and meta-analysis. BMJ k3519:362

    Google Scholar 

  4. Wolf AM et al (2010) American Cancer Society guideline for the early detection of prostate cancer: update 2010. CA Cancer J Clin 60(2):70–98

    PubMed  Google Scholar 

  5. Hugosson J et al (2019) A 16-yr Follow-up of the European Randomized study of Screening for Prostate Cancer. Eur Urol 76(1):43–51

    PubMed  PubMed Central  Google Scholar 

  6. de, V., II, et al., A Detailed Evaluation of the Effect of Prostate-specific Antigen-based Screening on Morbidity and Mortality of Prostate Cancer: 21-year Follow-up Results of the Rotterdam Section of the European Randomised Study of Screening for Prostate Cancer. Eur Urol, 2023. 84(4): p. 426–434.

  7. Hugosson J et al (2018) Eighteen-year follow-up of the Goteborg Randomized Population-based Prostate Cancer Screening Trial: effect of sociodemographic variables on participation, prostate cancer incidence and mortality. Scand J Urol 52(1):27–37

    PubMed  Google Scholar 

  8. Pinsky PF et al (2017) Extended mortality results for prostate cancer screening in the PLCO trial with median follow-up of 15 years. Cancer 123(4):592–599

    PubMed  Google Scholar 

  9. Arnsrud Godtman R et al (2015) Opportunistic testing versus organized prostate-specific antigen screening: outcome after 18 years in the Goteborg randomized population-based prostate cancer screening trial. Eur Urol 68(3):354–360

    PubMed  Google Scholar 

  10. Vickers A et al (2023) Current policies on early detection of prostate cancer create overdiagnosis and inequity with minimal benefit. BMJ e071082:381

    Google Scholar 

  11. Vickers AJ et al (2014) Empirical estimates of prostate cancer overdiagnosis by age and prostate-specific antigen. BMC Med 12:26

    PubMed  PubMed Central  Google Scholar 

  12. GBA, Richtlinie des Gemeinsamen Bundesausschusses über die Früherkennung von Krebserkrankungen. 2020.

  13. Starker, A. and A.C. Sass, [Participation in cancer screening in Germany: results of the German Health Interview and Examination Survey for Adults (DEGS1)]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz, 2013. 56(5–6): p. 858–67.

  14. (1971) Richtlinien des Bundesausschusses der Ärzte und Krankenkassen über die Früherkennung von Krebserkrankungen (Krebsfrüherkennungs-Richtlinien). Dtsch Ärztebl 68(25):1914–1916

  15. Naji L et al (2018) Digital Rectal Examination for Prostate Cancer Screening in Primary Care: A Systematic Review and Meta-Analysis. Ann Fam Med 16(2):149–154

    PubMed  PubMed Central  Google Scholar 

  16. Schroder, F.H., et al., Evaluation of the digital rectal examination as a screening test for prostate cancer. Rotterdam section of the European Randomized Study of Screening for Prostate Cancer. J Natl Cancer Inst, 1998. 90(23): p. 1817–23.

  17. Krilaviciute A et al (2023) Digital Rectal Examination Is Not a Useful Screening Test for Prostate Cancer. Eur. Urol Oncol

  18. Van Poppel H et al (2021) Early Detection of Prostate Cancer in 2020 and Beyond: Facts and Recommendations for the European Union and the European Commission. Eur Urol 79(3):327–329

    PubMed  Google Scholar 

  19. Van Poppel H et al (2021) Prostate-specific Antigen Testing as Part of a Risk-Adapted Early Detection Strategy for Prostate Cancer: European Association of Urology Position and Recommendations for 2021. Eur Urol 80(6):703–711

    PubMed  Google Scholar 

  20. Majek, O., et al., How to follow the new EU Council recommendation and improve prostate cancer early detection: the Prostaforum 2022 declaration. Eur Urol Open Sci, 2023. 53: p. 106–108.

  21. Beyer K et al (2024) Health Policy for Prostate Cancer Early Detection in the European Union and the Impact of Opportunistic Screening: PRAISE‑U Consortium. J Pers Med 14(1)

  22. Leitlinienprogramm Onkologie (Deutsche Krebsgesellschaft, Deutsche Krebshilfe, AWMF): S3-Leitlinie Prostatakarzinom, Langversion 6.2. 2021.

  23. Guidelines EAU (2023) Edn. presented at the. Milan, Bd. 2023. EAU, Annual Congress

    Google Scholar 

  24. Drost FH et al (2019) Prostate MRI, with or without MRI-targeted biopsy, and systematic biopsy for detecting prostate cancer. Cochrane Database Syst Rev 4(CD012663):4

    Google Scholar 

  25. Kasivisvanathan V et al (2018) MRI-Targeted or Standard Biopsy for Prostate-Cancer Diagnosis. N Engl J Med 378(19):1767–1777

    PubMed  PubMed Central  Google Scholar 

  26. van der Leest M et al (2019) Head-to-head Comparison of Transrectal Ultrasound-guided Prostate Biopsy Versus Multiparametric Prostate Resonance Imaging with Subsequent Magnetic Resonance-guided Biopsy in Biopsy-naive Men with Elevated Prostate-specific Antigen: A Large Prospective Multicenter Clinical Study. Eur Urol 75(4):570–578

    PubMed  Google Scholar 

  27. Rouviere O et al (2019) Use of prostate systematic and targeted biopsy on the basis of multiparametric MRI in biopsy-naive patients (MRI-FIRST): a prospective, multicentre, paired diagnostic study. Lancet Oncol 20(1):100–109

    PubMed  Google Scholar 

  28. Wegelin O et al (2019) The FUTURE Trial: A Multicenter Randomised Controlled Trial on Target Biopsy Techniques Based on Magnetic Resonance Imaging in the Diagnosis of Prostate Cancer in Patients with Prior Negative Biopsies. Eur Urol 75(4):582–590

    PubMed  Google Scholar 

  29. Exterkate, L., et al., Is There Still a Need for Repeated Systematic Biopsies in Patients with Previous Negative Biopsies in the Era of Magnetic Resonance Imaging-targeted Biopsies of the Prostate? Eur Urol Oncol, 2020. 3(2): p. 216–223.

  30. Eklund M et al (2021) MRI-Targeted or Standard Biopsy in Prostate Cancer Screening. N Engl J Med 385(10):908–920

    PubMed  Google Scholar 

  31. Nordstrom T et al (2021) Prostate cancer screening using a combination of risk-prediction, MRI, and targeted prostate biopsies (STHLM3-MRI): a prospective, population-based, randomised, open-label, non-inferiority trial. Lancet Oncol 22(9):1240–1249

    PubMed  Google Scholar 

  32. Kohestani K et al (2021) The GOTEBORG prostate cancer screening 2 trial: a prospective, randomised, population-based prostate cancer screening trial with prostate-specific antigen testing followed by magnetic resonance imaging of the prostate. Scand J Urol 55(2):116–124

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Hugosson J et al (2022) Prostate Cancer Screening with PSA and MRI Followed by Targeted Biopsy Only. N Engl J Med 387(23):2126–2137

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Turkbey B et al (2019) Prostate Imaging Reporting and Data System Version 2.1: 2019 Update of Prostate Imaging Reporting and Data System Version 2. Eur Urol 76(3):340–351

    PubMed  Google Scholar 

  35. Pagniez MA et al (2020) Predictive Factors of Missed Clinically Significant Prostate Cancers in Men with Negative Magnetic Resonance Imaging: A Systematic Review and Meta-Analysis. J Urol 204(1):24–32

    CAS  PubMed  Google Scholar 

  36. Nicola R, Bittencourt LK (2023) PI-RADS 3 lesions: a critical review and discussion of how to improve management. Abdom Radiol (ny) 48(7):2401–2405

    PubMed  Google Scholar 

  37. Becker AS et al (2020) Interactive, Up-to-date Meta-Analysis of MRI in the Management of Men with Suspected Prostate Cancer. J Digit Imaging 33(3):586–594

    PubMed  PubMed Central  Google Scholar 

  38. Boesen, L., et al., Assessment of the Diagnostic Accuracy of Biparametric Magnetic Resonance Imaging for Prostate Cancer in Biopsy-Naive Men: The Biparametric MRI for Detection of Prostate Cancer (BIDOC) Study. JAMA Netw Open, 2018. 1(2): p. e180219.

  39. van der Leest M et al (2019) High Diagnostic Performance of Short Magnetic Resonance Imaging Protocols for Prostate Cancer Detection in Biopsy-naive Men: The Next Step in Magnetic Resonance Imaging Accessibility. Eur Urol 76(5):574–581

    PubMed  Google Scholar 

  40. Schoots IG et al (2021) PI-RADS Committee Position on MRI Without Contrast Medium in Biopsy-Naive Men With Suspected Prostate Cancer: Narrative Review. AJR Am J Roentgenol 216(1):3–19

    PubMed  Google Scholar 

  41. Wallstrom J et al (2021) Bi- or multiparametric MRI in a sequential screening program for prostate cancer with PSA followed by MRI? Results from the Goteborg prostate cancer screening 2 trial. Eur Radiol 31(11):8692–8702

    PubMed  PubMed Central  Google Scholar 

  42. Boschheidgen M et al (2023) Multiparametric Magnetic Resonance Imaging in Prostate Cancer Screening at the Age of 45 Years: Results from the First Screening Round of the PROBASE Trial. Eur Urol

  43. Eldred-Evans D et al (2021) Population-Based Prostate Cancer Screening With Magnetic Resonance Imaging or Ultrasonography: The IP1-PROSTAGRAM Study. JAMA Oncol 7(3):395–402

    PubMed  PubMed Central  Google Scholar 

  44. Abeshouse A et al (2015) The molecular taxonomy of primary prostate cancer. Cell 163(4):1011–1011

    CAS  Google Scholar 

  45. Gerhauser C et al (2018) Molecular Evolution of Early-Onset Prostate Cancer Identifies Molecular Risk Markers and Clinical Trajectories. Cancer Cell 34(6):996–1011.e8

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Eickelschulte, S., et al., Biomarkers for the Detection and Risk Stratification of Aggressive Prostate Cancer. Cancers 2022, Vol. 14, Page 6094, 2022. 14(24): p. 6094–6094.

  47. Haffner MC et al (2021) Genomic and phenotypic heterogeneity in prostate cancer. Nat Rev Urol 18(2):79–92

    PubMed  Google Scholar 

  48. Brocks D et al (2014) Intratumor DNA methylation heterogeneity reflects clonal evolution in aggressive prostate cancer. Cell Rep 8(3):798–806

    CAS  PubMed  Google Scholar 

  49. Bryant RJ et al (2015) Predicting high-grade cancer at ten-core prostate biopsy using four kallikrein markers measured in blood in the ProtecT study. JNCI J Natl Cancer Inst 107(7)

  50. Loeb S, Catalona WJ (2014) The Prostate Health Index: a new test for the detection of prostate cancer. Ther Adv Urol 6(2):74–77

    PubMed  PubMed Central  Google Scholar 

  51. Klein EA et al (2017) The Single-parameter, Structure-based IsoPSA Assay Demonstrates Improved Diagnostic Accuracy for Detection of Any Prostate Cancer and High-grade Prostate Cancer Compared to a Concentration-based Assay of Total Prostate-specific Antigen: A Preliminary Report. Eur Urol 72(6):942–949

    PubMed  Google Scholar 

  52. Van Neste L et al (2016) Detection of High-grade Prostate Cancer Using a Urinary Molecular Biomarker-Based Risk Score. Eur Urol 70(5):740–748

    PubMed  Google Scholar 

  53. Tutrone R et al (2020) Clinical utility of the exosome based ExoDx Prostate(IntelliScore) EPI test in men presenting for initial Biopsy with a PSA 2–10 ng/mL. Prostate Cancer Prostatic Dis 23(4):607–614

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Tomlins SA et al (2016) Urine TMPRSS2:ERG Plus PCA3 for Individualized Prostate Cancer Risk Assessment. Eur Urol 70(1):45–53

    CAS  PubMed  Google Scholar 

  55. Ploussard G, de la Taille A (2018) The role of prostate cancer antigen 3 (PCA3) in prostate cancer detection. Expert Rev Anticancer Ther 18(10):1013–1020

    CAS  PubMed  Google Scholar 

  56. Grönberg H et al (2015) Prostate cancer screening in men aged 50–69 years (STHLM3): a prospective population-based diagnostic study. Lancet Oncol 16(16):1667–1676

    PubMed  Google Scholar 

  57. Alarcon-Zendejas AP et al (2022) The promising role of new molecular biomarkers in prostate cancer: from coding and non-coding genes to artificial intelligence approaches. Prostate Cancer Prostatic Dis 25(3):431–443

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Vickers AJ et al (2013) Strategy for detection of prostate cancer based on relation between prostate specific antigen at age 40–55 and long term risk of metastasis: case-control study. BMJ f2023:346

    Google Scholar 

  59. Arsov C et al (2022) A randomized trial of risk-adapted screening for prostate cancer in young men-Results of the first screening round of the PROBASE trial. Int J Cancer 150(11):1861–1869

    CAS  PubMed  Google Scholar 

  60. Brandt A et al (2009) Age at diagnosis and age at death in familial prostate cancer. Oncologist 14(12):1209–1217

    PubMed  Google Scholar 

  61. Page EC et al (2019) Interim Results from the IMPACT Study: Evidence for Prostate-specific Antigen Screening in BRCA 2 Mutation Carriers. Eur Urol 76(6):831–842

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Bancroft EK et al (2021) A prospective prostate cancer screening programme for men with pathogenic variants in mismatch repair genes (IMPACT): initial results from an international prospective study. Lancet Oncol 22(11):1618–1631

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Hamdy FC et al (2023) Fifteen-Year Outcomes after Monitoring, Surgery, or Radiotherapy for Prostate Cancer. N Engl J Med 388(17):1547–1558

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rouvier Al-Monajjed MD.

Ethics declarations

Interessenkonflikt

M. De Vrieze, A. Hübner, R. Al-Monajjed, P. Albers, J.P. Radtke, L. Schimmöller und M. Boschheidgen geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Hinweis des Verlags

Der Verlag bleibt in Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutsadressen neutral.

Der Originalbeitrag wurde überarbeitet:

In diesem Artikel fehlten zunächst die Adressdaten für die Autoren Maxime De Vrieze1, Anne Hübner2, Rouvier Al-Monajjed1,2, Peter Albers1,2, Jan Philipp Radtke2,3, Lars Schimmöller4,5, Matthias Boschheidgen4.

Die Zugehörigkeit ist wie folgt: 1 Division of Personalized Early Detection of Prostate Cancer, German Cancer Research Center (DKFZ), Heidelberg 2 University Dusseldorf, Medical Faculty, Department of Urology, D-40225 Dusseldorf, Germany 3 Department of Radiology, German Cancer Research Center (DKFZ), Heidelberg 4 University Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, D-40225 Dusseldorf, Germany 5 Department of Diagnostic, Interventional Radiology and Nuclear Medicine, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany

Der Originalbeitrag wurde korrigiert.

Die Autoren Maxime De Vrieze und Anne Hübner teilen sich die Erstautorenschaft.

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Vrieze, M., Hübner, A., Al-Monajjed, R. et al. Das Prostatakarzinom-Screening – aktueller Überblick. Radiologie 64, 479–487 (2024). https://doi.org/10.1007/s00117-024-01312-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-024-01312-1

Schlüsselwörter

Keywords

Navigation