Skip to main content
Log in

Magnetresonanztomographie der Lunge

Stand der Dinge

Magnetic resonance imaging of the lung

State of the art

  • CME
  • Published:
Die Radiologie Aims and scope Submit manuscript

Zusammenfassung

Die Lunge war lange Zeit aufgrund der geringen Protonendichte des Parenchyms sowie des schnellen Signalzerfalls an den Luft-Gewebe-Grenzen der Magnetresonanztomographie (MRT) schwer zugänglich. Technische Neuerungen haben diese Anforderungen größtenteils adressiert. Pulmonale Veränderungen, welche mit Gewebevermehrung einhergehen („Plus-Pathologien“), lassen sich nun aufgrund der lokal vermehrten Protonendichte mit einer hohen diagnostischen Genauigkeit darstellen. Die MRT bietet im Vergleich zur Computertomographie (CT) ein umfassendes Spektrum funktioneller Bildgebungsverfahren (Atemmechanik, Perfusion, Ventilation) sowie – als strahlungsfreie, nicht-invasive Untersuchungsmodalität – die Möglichkeit wiederholter Untersuchungen für Verlaufsbeurteilungen oder die Überwachung von Therapieeffekten, auch bei Kindern. In diesem Artikel besprechen wir technische Aspekte, geben Protokollvorschläge und erörtern die Rolle der Lungen-MRT in der routinemäßigen Beurteilung verschiedener Erkrankungen.

Abstract

Due to the low proton density of the lung parenchyma and the rapid signal decay at the air-tissue interfaces, for a long time the lungs were difficult to access using magnetic resonance imaging (MRI); however, technical advances could address most of these obstacles. Pulmonary alterations associated with tissue proliferation (“plus pathologies”), can now be detected with high diagnostic accuracy because of the locally increased proton density. Compared to computed tomography (CT), MRI provides a comprehensive range of functional imaging procedures (respiratory mechanics, perfusion and ventilation). In addition, as a radiation-free noninvasive examination modality, it enables repeated examinations for assessment of the course or monitoring of the effects of treatment, even in children. This article discusses the technical aspects, gives suggestions for protocols and explains the role of MRI of the lungs in the routine assessment of various diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7

Literatur

  1. Wielpütz M, Kauczor HU (2012) MRI of the lung: state of the art. Diagn Interv Radiol 18:344–353

    PubMed  Google Scholar 

  2. Wielpütz MO, Triphan SMF, Ohno Y, Jobst BJ, Kauczor HU (2019) Outracing lung signal decay—potential of Ultrashort echo time MRI. Rofo 191:415–423

    PubMed  Google Scholar 

  3. Biederer J, Hintze C, Fabel M (2008) MRI of pulmonary nodules: technique and diagnostic value. Cancer Imaging 8:125–130

    PubMed  PubMed Central  Google Scholar 

  4. Ley-Zaporozhan J, Puderbach M, Kauczor HU (2008) MR for the evaluation of obstructive pulmonary disease. Magn Reson Imaging Clin N Am 16:291–308

    PubMed  Google Scholar 

  5. Iwasawa T, Takahashi H, Ogura T et al (2007) Correlation of lung parenchymal MR signal intensity with pulmonary function tests and quantitative computed tomography (CT) evaluation: a pilot study. J Magn Reson Imaging 26:1530–1536

    PubMed  Google Scholar 

  6. Biederer J, Beer M, Hirsch W et al (2012) MRI of the lung (2/3). Why ... when ... how? Insights Imaging 3:355–371

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Fink C, Puderbach M, Biederer J et al (2007) Lung MRI at 1.5 and 3 Tesla: observer preference study and lesion contrast using five different pulse sequences. Invest Radiol 42:377–383

    PubMed  Google Scholar 

  8. Puderbach M, Hintze C, Ley S, Eichinger M, Kauczor HU, Biederer J (2007) MR imaging of the chest: a practical approach at 1.5T. Eur J Radiol 64:345–355

    CAS  PubMed  Google Scholar 

  9. Kluge A, Luboldt W, Bachmann G (2006) Acute pulmonary embolism to the subsegmental level: diagnostic accuracy of three MRI techniques compared with 16-MDCT. AJR Am J Roentgenol 187:W7–14

    PubMed  Google Scholar 

  10. Johnson KM, Fain SB, Schiebler ML, Nagle S (2013) Optimized 3D ultrashort echo time pulmonary MRI. Magn Reson Med 70:1241–1250

    PubMed  Google Scholar 

  11. Longuefosse A, Raoult J, Benlala I et al (2023) Generating high-resolution synthetic CT from lung MRI with ultrashort echo times: initial evaluation in cystic fibrosis. Radiology 308:e230052

    PubMed  Google Scholar 

  12. Plathow C, Fink C, Ley S et al (2004) Measurement of diaphragmatic length during the breathing cycle by dynamic MRI: comparison between healthy adults and patients with an intrathoracic tumor. Eur Radiol 14:1392–1399

    PubMed  Google Scholar 

  13. Fink C, Puderbach M, Bock M et al (2004) Regional lung perfusion: assessment with partially parallel three-dimensional MR imaging. Radiology 231:175–184

    PubMed  Google Scholar 

  14. Wielpütz MO, Puderbach M, Kopp-Schneider A et al (2014) Magnetic resonance imaging detects changes in structure and perfusion, and response to therapy in early cystic fibrosis lung disease. Am J Respir Crit Care Med 189:956–965

    PubMed  Google Scholar 

  15. Eichinger M, Puderbach M, Fink C et al (2006) Contrast-enhanced 3D MRI of lung perfusion in children with cystic fibrosis—initial results. Eur Radiol 16:2147–2152

    PubMed  Google Scholar 

  16. Triphan SMF, Stahl M, Jobst BJ et al (2020) Echo time-dependence of observed lung T1 in patients with cystic fibrosis and correlation with clinical metrics. J Magn Reson Imaging 52:1645–1654

    PubMed  Google Scholar 

  17. Voskrebenzev A, Gutberlet M, Klimes F et al (2018) Feasibility of quantitative regional ventilation and perfusion mapping with phase-resolved functional lung (PREFUL) MRI in healthy volunteers and COPD, CTEPH, and CF patients. Magn Reson Med 79:2306–2314

    CAS  PubMed  Google Scholar 

  18. Jobst BJ, Triphan SM, Sedlaczek O et al (2015) Functional lung MRI in chronic obstructive pulmonary disease: comparison of T1 mapping, oxygen-enhanced T1 mapping and dynamic contrast enhanced perfusion. PLoS ONE 10:e121520

    PubMed  PubMed Central  Google Scholar 

  19. Ley S, Puderbach M, Risse F et al (2007) Impact of oxygen inhalation on the pulmonary circulation: assessment by magnetic resonance (MR)-perfusion and MR-flow measurements. Invest Radiol 42:283–290

    CAS  PubMed  Google Scholar 

  20. van Beek EJ, Wild JM, Kauczor HU, Schreiber W, Mugler JP 3rd, de Lange EE (2004) Functional MRI of the lung using hyperpolarized 3‑helium gas. J Magn Reson Imaging 20:540–554

    PubMed  Google Scholar 

  21. Mannino DM, Doherty DE, Buist SA (2006) Global Initiative on Obstructive Lung Disease (GOLD) classification of lung disease and mortality: findings from the Atherosclerosis Risk in Communities (ARIC) study. Respir Med 100:115–122

    PubMed  Google Scholar 

  22. Suga K, Tsukuda T, Awaya H et al (1999) Impaired respiratory mechanics in pulmonary emphysema: evaluation with dynamic breathing MRI. J Magn Reson Imaging 10:510–520

    CAS  PubMed  Google Scholar 

  23. Iwasawa T, Yoshiike Y, Saito K, Kagei S, Gotoh T, Matsubara S (2000) Paradoxical motion of the hemidiaphragm in patients with emphysema. J Thorac Imaging 15:191–195

    CAS  PubMed  Google Scholar 

  24. Heussel CP, Ley S, Biedermann A et al (2004) Respiratory lumenal change of the pharynx and trachea in normal subjects and COPD patients: assessment by cine-MRI. Eur Radiol 14:2188–2197

    PubMed  Google Scholar 

  25. Theissen IL, Meissner A (1996) Hypoxic pulmonary vasoconstriction. Anaesthesist 45:643–652

    CAS  PubMed  Google Scholar 

  26. Molinari F, Fink C, Risse F, Tuengerthal S, Bonomo L, Kauczor HU (2006) Assessment of differential pulmonary blood flow using perfusion magnetic resonance imaging: comparison with radionuclide perfusion scintigraphy. Invest Radiol 41:624–630

    PubMed  Google Scholar 

  27. Ohno Y, Hatabu H, Murase K et al (2004) Quantitative assessment of regional pulmonary perfusion in the entire lung using three-dimensional ultrafast dynamic contrast-enhanced magnetic resonance imaging: Preliminary experience in 40 subjects. J Magn Reson Imaging 20:353–365

    PubMed  Google Scholar 

  28. Schiwek M, Triphan SMF, Biederer J et al (2022) Quantification of pulmonary perfusion abnormalities using DCE-MRI in COPD: comparison with quantitative CT and pulmonary function. Eur Radiol 32:1879–1890

    CAS  PubMed  Google Scholar 

  29. Ohno Y, Sugimura K, Hatabu H (2003) Clinical oxygen-enhanced magnetic resonance imaging of the lung. Top Magn Reson Imaging 14:237–243

    PubMed  Google Scholar 

  30. Marshall H, Deppe MH, Parra-Robles J et al (2012) Direct visualisation of collateral ventilation in COPD with hyperpolarised gas MRI. Thorax 67:613–617

    PubMed  Google Scholar 

  31. Ley-Zaporozhan J, Ley S, Kauczor HU (2008) Morphological and functional imaging in COPD with CT and MRI: present and future. Eur Radiol 18:510–521

    PubMed  Google Scholar 

  32. Biederer J, Mirsadraee S, Beer M et al (2012) MRI of the lung (3/3)-current applications and future perspectives. Insights Imaging 3:373–386

    PubMed  PubMed Central  Google Scholar 

  33. Eichinger M, Heussel CP, Kauczor HU, Tiddens H, Puderbach M (2010) Computed tomography and magnetic resonance imaging in cystic fibrosis lung disease. J Magn Reson Imaging 32:1370–1378

    PubMed  Google Scholar 

  34. Wielpütz MO, Eichinger M, Biederer J et al (2016) Imaging of cystic fibrosis lung disease and clinical interpretation. Rofo 188:834–845

    PubMed  Google Scholar 

  35. Graeber SY, Zhou-Suckow Z, Schatterny J, Hirtz S, Boucher RC, Mall MA (2013) Hypertonic saline is effective in the prevention and treatment of mucus obstruction, but not airway inflammation, in mice with chronic obstructive lung disease. Am J Respir Cell Mol Biol 49:410–417

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Biederer J, Both M, Graessner J et al (2003) Lung morphology: fast MR imaging assessment with a volumetric interpolated breath-hold technique: initial experience with patients. Radiology 226:242–249

    PubMed  Google Scholar 

  37. Puderbach M, Eichinger M, Gahr J et al (2007) Proton MRI appearance of cystic fibrosis: comparison to CT. Eur Radiol 17:716–724

    PubMed  Google Scholar 

  38. Rosenfeld M, Ratjen F, Brumback L et al (2012) Inhaled hypertonic saline in infants and children younger than 6 years with cystic fibrosis: the ISIS randomized controlled trial. JAMA 307:2269–2277

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Mentore K, Froh DK, de Lange EE, Brookeman JR, Paget-Brown AO, Altes TA (2005) Hyperpolarized HHe 3 MRI of the lung in cystic fibrosis: assessment at baseline and after bronchodilator and airway clearance treatment. Acad Radiol 12:1423–1429

    PubMed  Google Scholar 

  40. Altes TA, Johnson M, Fidler M et al (2017) Use of hyperpolarized helium‑3 MRI to assess response to ivacaftor treatment in patients with cystic fibrosis. J Cyst Fibros 16:267–274

    PubMed  Google Scholar 

  41. Wucherpfennig L, Triphan SMF, Wege S et al (2022) Magnetic resonance imaging detects improvements of pulmonary and paranasal sinus abnormalities in response to elexacaftor/tezacaftor/ivacaftor therapy in adults with cystic fibrosis. J Cyst Fibros. https://doi.org/10.1016/j.jcf.2022.03.011

    Article  PubMed  Google Scholar 

  42. Eichinger M, Optazaite DE, Kopp-Schneider A et al (2012) Morphologic and functional scoring of cystic fibrosis lung disease using MRI. Eur J Radiol 81:1321–1329

    PubMed  Google Scholar 

  43. Stahl M, Steinke E, Graeber SY et al (2021) Magnetic resonance imaging detects progression of lung disease and impact of newborn screening in preschool children with cystic fibrosis. Am J Respir Crit Care Med. https://doi.org/10.1164/rccm.202102-0278OC

    Article  PubMed  PubMed Central  Google Scholar 

  44. Graeber SY, Renz DM, Stahl M et al (2022) Effects of Elexacaftor/Tezacaftor/Ivacaftor therapy on lung clearance index and magnetic resonance imaging in patients with cystic fibrosis and one or two F508del alleles. Am J Respir Crit Care Med 206:311–320

    CAS  PubMed  Google Scholar 

  45. Leutz-Schmidt P, Optazaite DE, Sommerburg O et al (2023) Magnetic resonance imaging detects onset and association with lung disease severity of bronchial artery dilatation in cystic fibrosis. ERJ Open Res 9:

  46. Lederlin M, Bauman G, Eichinger M et al (2013) Functional MRI using fourier decomposition of lung signal: reproducibility of ventilation- and perfusion-weighted imaging in healthy volunteers. Eur J Radiol 82:1015–1022

    PubMed  Google Scholar 

  47. Bauman G, Puderbach M, Heimann T et al (2013) Validation of fourier decomposition MRI with dynamic contrast-enhanced MRI using visual and automated scoring of pulmonary perfusion in young cystic fibrosis patients. Eur J Radiol 82:2371–2377

    PubMed  Google Scholar 

  48. Thomen RP, Walkup LL, Roach DJ, Cleveland ZI, Clancy JP, Woods JC (2017) Hyperpolarized (129)Xe for investigation of mild cystic fibrosis lung disease in pediatric patients. J Cyst Fibros 16:275–282

    CAS  PubMed  Google Scholar 

  49. Höffken G, Lorenz J, Kern W et al (2009) Epidemiology, diagnosis, antimicrobial therapy and management of community-acquired pneumonia and lower respiratory tract infections in adults. Guidelines of the Paul-Ehrlich-Society for Chemotherapy, the German Respiratory Society, the German Society for Infectiology and the Competence Network CAPNETZ Germany. Pneumologie 63:e1–68

    PubMed  Google Scholar 

  50. Dalhoff K, Abele-Horn M, Andreas S et al (2012) Epidemiology, diagnosis and treatment of adult patients with nosocomial pneumonia. S‑3 Guideline of the German Society for Anaesthesiology and Intensive Care Medicine, the German Society for Infectious Diseases, the German Society for Hygiene and Microbiology, the German Respiratory Society and the Paul-Ehrlich-Society for Chemotherapy. Pneumologie 66:707–765

    CAS  PubMed  Google Scholar 

  51. Self WH, Courtney DM, McNaughton CD, Wunderink RG, Kline JA (2013) High discordance of chest x‑ray and computed tomography for detection of pulmonary opacities in ED patients: implications for diagnosing pneumonia. Am J Emerg Med 31:401–405

    PubMed  Google Scholar 

  52. Eibel R, Herzog P, Dietrich O et al (2006) Pulmonary abnormalities in immunocompromised patients: comparative detection with parallel acquisition MR imaging and thin-section helical CT. Radiology 241:880–891

    PubMed  Google Scholar 

  53. Peltola V, Ruuskanen O, Svedstrom E (2008) Magnetic resonance imaging of lung infections in children. Pediatr Radiol 38:1225–1231

    PubMed  Google Scholar 

  54. Biederer J, Busse I, Grimm J et al (2002) Sensitivity of MRI in detecting alveolar infiltrates: experimental studies. Rofo 174:1033–1039

    CAS  PubMed  Google Scholar 

  55. Konietzke P, Mueller J, Wuennemann F et al (2020) The value of chest magnetic resonance imaging compared to chest radiographs with and without additional lung ultrasound in children with complicated pneumonia. PLoS ONE 15:e230252

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Lutterbey G, Grohe C, Gieseke J et al (2007) Initial experience with lung-MRI at 3.0T: comparison with CT and clinical data in the evaluation of interstitial lung disease activity. Eur J Radiol 61:256–261

    CAS  PubMed  Google Scholar 

  57. Yi CA, Lee KS, Han J, Chung MP, Chung MJ, Shin KM (2008) 3‑T MRI for differentiating inflammation- and fibrosis-predominant lesions of usual and nonspecific interstitial pneumonia: comparison study with pathologic correlation. Am J Roentgenol 190:878–885

    Google Scholar 

  58. Brady D, Lavelle LP, McEvoy SH et al (2016) Assessing fibrosis in pulmonary sarcoidosis: late-enhanced MRI compared to anatomic HRCT imaging. Qjm 109:257–264

    CAS  PubMed  Google Scholar 

  59. Craig DA, Colletti PM, Ratto D, Gordonson JS, Raval JK, Sharma OP (1988) MRI findings in pulmonary sarcoidosis. Magn Reson Imaging 6:567–573

    CAS  PubMed  Google Scholar 

  60. Chung JH, Cox CW, Forssen AV, Biederer J, Puderbach M, Lynch DA (2014) The dark lymph node sign on magnetic resonance imaging: a novel finding in patients with sarcoidosis. J Thorac Imaging 29:125–129

    PubMed  Google Scholar 

  61. Stein PD, Fowler SE, Goodman LR et al (2006) Multidetector computed tomography for acute pulmonary embolism. N Engl J Med 354:2317–2327

    CAS  PubMed  Google Scholar 

  62. Stein PD, Chenevert TL, Fowler SE et al (2010) Gadolinium-enhanced magnetic resonance angiography for pulmonary embolism: a multicenter prospective study (PIOPED III). Ann Intern Med 152:434–443

    PubMed  PubMed Central  Google Scholar 

  63. Wucherpfennig L, Triphan SM, Weinheimer O et al (2023) Reproducibility of pulmonary magnetic resonance angiography in adults with muco-obstructive pulmonary disease. Acta Radiol 64:1038–1046

    PubMed  Google Scholar 

  64. Ersoy H, Goldhaber SZ, Cai T et al (2007) Time-resolved MR angiography: a primary screening examination of patients with suspected pulmonary embolism and contraindications to administration of iodinated contrast material. AJR Am J Roentgenol 188:1246–1254

    PubMed  Google Scholar 

  65. Peacock A, Simonneau G, Rubin L (2006) Controversies, uncertainties and future research on the treatment of chronic thromboembolic pulmonary hypertension. Proc Am Thorac Soc 3:608–614

    PubMed  Google Scholar 

  66. Pengo V, Lensing AW, Prins MH et al (2004) Incidence of chronic thromboembolic pulmonary hypertension after pulmonary embolism. N Engl J Med 350:2257–2264

    CAS  PubMed  Google Scholar 

  67. Dartevelle P, Fadel E, Mussot S et al (2004) Chronic thromboembolic pulmonary hypertension. Eur Respir J 23:637–648

    CAS  PubMed  Google Scholar 

  68. Kreitner KF, Ley S, Kauczor HU et al (2004) Chronic thromboembolic pulmonary hypertension: pre- and postoperative assessment with breath-hold MR imaging techniques. Radiology 232:535–543

    PubMed  Google Scholar 

  69. Kluge A, Gerriets T, Lange U, Bachman G (2005) MRI for short-term follow-up of acute pulmonary embolism. Assessment of thrombus appearance and pulmonary perfusion: a feasibility study. Eur Radiol 15:1969–1977

    PubMed  Google Scholar 

  70. Ley S, Fink C, Zaporozhan J et al (2005) Value of high spatial and high temporal resolution magnetic resonance angiography for differentiation between idiopathic and thromboembolic pulmonary hypertension: initial results. Eur Radiol 15:2256–2263

    PubMed  Google Scholar 

  71. Regier M, Kandel S, Kaul MG et al (2007) Detection of small pulmonary nodules in high-field MR at 3 T: evaluation of different pulse sequences using porcine lung explants. Eur Radiol 17:1341–1351

    CAS  PubMed  Google Scholar 

  72. Baumann T, Ludwig U, Pache G et al (2008) Detection of pulmonary nodules with move-during-scan magnetic resonance imaging using a free-breathing turbo inversion recovery magnitude sequence. Invest Radiol 43:359–367

    PubMed  Google Scholar 

  73. Biederer J, Schoene A, Freitag S, Reuter M, Heller M (2003) Simulated pulmonary nodules implanted in a dedicated porcine chest phantom: sensitivity of MR imaging for detection. Radiology 227:475–483

    PubMed  Google Scholar 

  74. Meier-Schroers M, Homsi R, Skowasch D et al (2018) Lung cancer screening with MRI: results of the first screening round. J Cancer Res Clin Oncol 144:117–125

    PubMed  Google Scholar 

  75. Ohno Y, Koyama H, Yoshikawa T et al (2017) Standard-, reduced-, and no-dose thin-section radiologic examinations: comparison of capability for nodule detection and nodule type assessment in patients suspected of having pulmonary nodules. Radiology 284:562–573

    PubMed  Google Scholar 

  76. Hintze C, Biederer J, Wenz HW, Eberhardt R, Kauczor HU (2006) MRI in staging of lung cancer. Radiologe 46:251–254 (256–259)

    CAS  PubMed  Google Scholar 

  77. Hintze C, Dinkel J, Biederer J, Heussel CP, Puderbach M (2010) New procedures. Comprehensive staging of lung cancer by MRI. Radiologe 50:699–705

    CAS  PubMed  Google Scholar 

  78. Biederer J, Reuter M, Both M et al (2002) Analysis of artefacts and detail resolution of lung MRI with breath-hold T1-weighted gradient-echo and T2-weighted fast spin-echo sequences with respiratory triggering. Eur Radiol 12:378–384

    CAS  PubMed  Google Scholar 

  79. Ohno Y, Adachi S, Motoyama A et al (2001) Multiphase ECG-triggered 3D contrast-enhanced MR angiography: utility for evaluation of hilar and mediastinal invasion of bronchogenic carcinoma. J Magn Reson Imaging 13:215–224

    CAS  PubMed  Google Scholar 

  80. Pauls S, Mottaghy FM, Schmidt SA et al (2008) Evaluation of lung tumor perfusion by dynamic contrast-enhanced MRI. Magn Reson Imaging 26:1334–1341

    PubMed  Google Scholar 

  81. Ohno Y, Koyama H, Takenaka D et al (2008) Dynamic MRI, dynamic multidetector-row computed tomography (MDCT), and coregistered 2‑[fluorine-18]-fluoro-2-deoxy-D-glucose-positron emission tomography (FDG-PET)/CT: comparative study of capability for management of pulmonary nodules. J Magn Reson Imaging 27:1284–1295

    PubMed  Google Scholar 

  82. Ohno Y, Koyama H, Nogami M et al (2007) STIR turbo SE MR imaging vs. coregistered FDG-PET/CT: quantitative and qualitative assessment of N‑stage in non-small-cell lung cancer patients. J Magn Reson Imaging 26:1071–1080

    PubMed  Google Scholar 

  83. Ohno Y, Hatabu H, Takenaka D et al (2004) Metastases in mediastinal and hilar lymph nodes in patients with non-small cell lung cancer: quantitative and qualitative assessment with STIR turbo spin-echo MR imaging. Radiology 231:872–879

    PubMed  Google Scholar 

Download references

Förderung

Gefördert durch das Bundesministerium für Bildung und Forschung (82DZL004A1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark O. Wielpütz MHBA EDIR EBIR.

Ethics declarations

Interessenkonflikt

Gemäß den Richtlinien des Springer Medizin Verlags werden Autoren und Wissenschaftliche Leitung im Rahmen der Manuskripterstellung und Manuskriptfreigabe aufgefordert, eine vollständige Erklärung zu ihren finanziellen und nichtfinanziellen Interessen abzugeben.

Autoren

L. Wucherpfennig: A. Finanzielle Interessen: L. Wucherpfennig gibt an, dass kein finanzieller Interessenkonflikt besteht. – B. Nichtfinanzielle Interessen: Assistenzärztin Diagnostische und Interventionelle Radiologie, Universitätsklinikum Heidelberg, Heidelberg. H.-U. Kauczor: A. Finanzielle Interessen: Siemens: finanzielle Förderung und geldwerte Leistungen. – Siemens: Referentenhonorar. – B. Nichtfinanzielle Interessen: Ärztlicher Direktor, Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinik Heidelberg. M. Eichinger: A. Finanzielle Interessen: Vortragshonorare oder Kostenerstattung als passiv Teilnehmende: Roche Pharma, Vertex Pharmaceuticals, Boehringer Ingelheim. – B. Nichtfinanzielle Interessen: Oberärztin, Abteilung Diagnostische und Interventionelle Radiologie mit Nuklearmedizin, Thoraxklinik, Universitätsklinik Heidelberg. M.O. Wielpütz: A. Finanzielle Interessen: Studienförderung: Vertex Pharmaceuticals, Boehringer Ingelheim. – Honorar an das Institut gezahlt: Vertex Pharmaceuticals, Boehringer Ingelheim. – B. Nichtfinanzielle Interessen: Stellvertretender Ärztlicher Direktor, Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Heidelberg | Vorstand AG Thorax, Deutsche Röntgengesellschaft; Board Member, European Society for Thoracic Imaging.

Wissenschaftliche Leitung

Die vollständige Erklärung zum Interessenkonflikt der Wissenschaftlichen Leitung finden Sie am Kurs der zertifizierten Fortbildung auf www.springermedizin.de/cme.

Der Verlag

erklärt, dass für die Publikation dieser CME-Fortbildung keine Sponsorengelder an den Verlag fließen.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Wissenschaftliche Leitung

S. Delorme, Heidelberg (Leitung)

P. Reimer, Karlsruhe

W. Reith, Homburg/Saar

C. Weidekamm, Wien

M. Uhl, Freiburg

J. Vogel-Claussen, Hannover

Hinweis des Verlags

Der Verlag bleibt in Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutsadressen neutral.

figure qr

QR-Code scannen & Beitrag online lesen

CME-Fragebogen

CME-Fragebogen

Was ist keine Herausforderung bei der Magnetresonanztomographie der Lunge?

Atembewegungen

Gefäßbewegungen

Suszeptibilitätsartefakte

Darmbewegungen

Herzbewegungen

Welches der folgenden Phänomene ist eine sog. Minus-Pathologie in der Magnetresonanztomographie der Lunge?

Atelektase

Emphysembulla

Tumor

Infiltrat

Erguss

Was ist ein großer Vorteil der Magnetresonanztomographie gegenüber anderen bildgebenden Verfahren?

Kostengünstig

Leicht verfügbar

Schnelle Untersuchungszeit

Kein Problem bei klaustrophoben Patienten

Kombination von morphologischer und funktioneller Bildgebung

Welche Scanner sind zur Lungenbildgebung besonders gut geeignet?

< 1 Tesla (T)

1 T

1,5 T

3 T

7 T

Welches ist keine Basissequenz der Magnetresonanztomographie (MRT) der Lunge?

T1/T2-bSSFP („balanced steady-state free precession“)

T1-TSE (Turbo-Spin-Echo)

T1-GRE (Gradientenecho)

T2-FSE („fast spin echo“)

3He-MRT

Welches ist keine Indikation für eine Magnetresonanztomographie der Lunge bei Kindern?

CF („cystic fibrosis“)

Interstitielle Lungenerkrankung

Pneumonie

Akute Lungenarterienembolie

Lungensequester

Bei welcher Erkrankung ist die Magnetresonanztomographie der Lunge die First-line-Untersuchung?

Rundherd

Interstitielle Lungenerkrankung

Akute Lungenarterienembolie

Pancoast-Tumor

Pneumonie

Welche Pathologie wird nicht primär durch funktionelle Magnetresonanztomographietechniken visualisiert?

Konsolidierung

Störung der Atemmechanik

Luftröhren‑/Atemwegsinstabilität

Perfusionsstörung

Ventilationsstörung

Wozu könnte die Magnetresonanztomographie zukünftig bei der Bildgebung der interstitiellen Lungenerkrankungen von Nutzen sein?

Darstellung subtiler subpleuraler fibrotischer Veränderungen

Darstellung kleiner Knötchen

Darstellung von Minus-Pathologien

Lymphadenopathie bei Sarkoidose

Bewertung der Entzündungsaktivität

Bei welchen Patienten stellt die Magnetresonanzangiographie bei der Bildgebung einer akuten Lungenarterienembolie keine wertvolle Alternative zur Computertomographie dar?

Schwangere

Instabile Patienten

Junge Patienten

Patienten mit Kontrastmittelallergie

Patienten mit Niereninsuffizienz

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wucherpfennig, L., Kauczor, HU., Eichinger, M. et al. Magnetresonanztomographie der Lunge. Radiologie 63, 849–862 (2023). https://doi.org/10.1007/s00117-023-01229-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-023-01229-1

Schlüsselwörter

Keywords

Navigation