Skip to main content
Log in

Bildgebung von Muskelverletzungen im Sport

Imaging of muscle injuries in sports medicine

  • Leitthema
  • Published:
Die Radiologie Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Eine frühzeitige Diagnose von Muskelverletzungen ist von wesentlicher klinischer Bedeutung, um eine stadiengerechte Therapie einzuleiten und einen optimalen Heilungsverlauf zu ermöglichen.

Ziel

Ziel dieser Übersichtsarbeit ist es, ein Update zur bildgebenden Diagnostik von Muskelverletzungen in der Sportmedizin mit dem Schwerpunkt Sonographie und Magnetresonanztomographie (MRT) zu geben und neben den Verfahren in der Routinediagnostik auch experimentelle Ansätze vorzustellen.

Material und Methoden

Es wurde eine PubMed-Literaturrecherche durchgeführt zu den Stichworten: muscle, muscle injury, muscle imaging, muscle injury classification, delayed onset muscle soreness, ultrasound, MRI, sodium MRI, potassium MRI, ultra-high-field MRI, injuries of athletes. Fokus der Literaturrecherche war der Zeitraum 2012 bis 2022.

Ergebnisse

Bildgebende Verfahren spielen in der Diagnostik von Muskelverletzungen eine entscheidende Rolle, um eine klinische Verdachtsdiagnose zu bestätigen und das Verletzungsausmaß zu bestimmen. Das Ergebnis der Bildgebung hat unmittelbaren Einfluss auf Therapieentscheidungen und beeinflusst die Prognose. Der Bildgebung kommt besonders bei unklaren Beschwerden oder unklarem Verletzungsausmaß, rezidivierenden Verletzungen, und auch bei unerwartet prolongierten Heilungsverläufen oder in Fällen, die einer interventionellen oder chirurgischen Intervention bedürfen, eine große Bedeutung zu. Neben etablierten Verfahren wie der B‑Bild-Sonographie und der 1H‑MRT zeigen einzelne Studien vielversprechende Ansätze, um die Bildgebung von Muskelverletzungen zukünftig zu verbessern. Hinsichtlich einer konkreten Anwendung von neuen Verfahren wie der kontrastmittelverstärkten Sonographie oder der X‑Kern-MRT sind weiterführende Studien mit größeren Patientenkollektiven notwendig, um die bisherigen Erkenntnisse zu bestätigen und ggf. klinisch anwendbar zu machen.

Schlussfolgerung

Die B‑Bild-Sonographie bietet sich als leicht verfügbare, kostengünstige Modalität zur initialen Diagnostik von Muskelverletzungen an. Die MRT gilt weiterhin als Referenzstandard und ermöglicht eine genaue morphologische Erfassung des Verletzungsausmaßes. Insbesondere zur objektiven Bestimmung von „Return-to-Sports“-Kriterien und der individuellen Beurteilung von Belastungs- und Trainingsfähigkeiten stehen nach wie vor keine bildgebenden Verfahren zur Verfügung.

Abstract

Background

Early diagnosis of muscle injuries is indispensable in order to initiate appropriate treatment and to facilitate optimal healing.

Purpose

The aim of this review is to provide an update on imaging of muscle injuries in sports medicine with a focus on ultrasound and magnetic resonance imaging (MRI) and to present experimental approaches in addition to routine diagnostic procedures.

Materials and methods

A PubMed literature search for the years 2012–2022 using the following keywords was performed: muscle, muscle injury, muscle imaging, muscle injury classification, delayed onset muscle soreness, ultrasound, MRI, sodium MRI, potassium MRI, ultra-high-field MRI, injuries of athletes.

Results

Imaging is crucial to confirm and assess the extent of sports-related muscle injuries and may help establishing treatment decisions, which directly affect the prognosis. This is of importance when the diagnosis or grade of injury is unclear, when recovery is taking longer than expected, and when interventional or surgical management may be necessary. In addition to established methods such as B‑mode ultrasound and 1H‑MRI, individual studies show promising approaches to further improve the imaging of muscle injuries in the future. Prior to the integration of contrast-enhanced ultrasound and X‑nuclei into clinical routine, additional studies are needed to validate these techniques further.

Conclusion

B‑mode ultrasound represents an easily available, cost-effective modality for the initial diagnosis of muscle injuries. MRI is still considered the reference standard and enables an accurate morphological assessment of the extent of the injury. There are still no imaging approaches available for the objective determination of the optimal point of return to play.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Askling CM, Tengvar M, Saartok T et al (2007) Acute first-time hamstring strains during high-speed running: a longitudinal study including clinical and magnetic resonance imaging findings. Am J Sports Med 35:197–206

    Article  PubMed  Google Scholar 

  2. Askling CM, Tengvar M, Saartok T et al (2008) Proximal hamstring strains of stretching type in different sports: injury situations, clinical and magnetic resonance imaging characteristics, and return to sport. Am J Sports Med 36:1799–1804

    Article  PubMed  Google Scholar 

  3. Chan O, Del Buono A, Best TM et al (2012) Acute muscle strain injuries: a proposed new classification system. Knee Surg Sports Traumatol Arthrosc 20:2356–2362

    Article  PubMed  Google Scholar 

  4. Connell DA, Schneider-Kolsky ME, Hoving JL et al (2004) Longitudinal study comparing sonographic and MRI assessments of acute and healing hamstring injuries. AJR Am J Roentgenol 183:975–984

    Article  PubMed  Google Scholar 

  5. Dahlmann A, Kopp C, Linz P et al (2016) Quantitative assessment of muscle injury by (23)Na magnetic resonance imaging. SpringerPlus 5:661

    Article  PubMed  PubMed Central  Google Scholar 

  6. Darrow CJ, Collins CL, Yard EE et al (2009) Epidemiology of severe injuries among United States high school athletes: 2005–2007. Am J Sports Med 37:1798–1805

    Article  PubMed  Google Scholar 

  7. Douis H, Gillett M, James SL (2011) Imaging in the diagnosis, prognostication, and management of lower limb muscle injury. Semin Musculoskelet Radiol 15:27–41

    Article  PubMed  Google Scholar 

  8. Drakonaki EE, Sudol-Szopinska I, Sinopidis C et al (2019) High resolution ultrasound for imaging complications of muscle injury: Is there an additional role for elastography? J Ultrason 19:137–144

    Article  PubMed  PubMed Central  Google Scholar 

  9. Edouard P, Branco P, Alonso JM (2016) Muscle injury is the principal injury type and hamstring muscle injury is the first injury diagnosis during top-level international athletics championships between 2007 and 2015. Br J Sports Med 50:619–630

    Article  PubMed  Google Scholar 

  10. Ekstrand J, Hagglund M, Walden M (2011) Epidemiology of muscle injuries in professional football (soccer). Am J Sports Med 39:1226–1232

    Article  PubMed  Google Scholar 

  11. Ekstrand J, Healy JC, Walden M et al (2012) Hamstring muscle injuries in professional football: the correlation of MRI findings with return to play. Br J Sports Med 46:112–117

    Article  PubMed  Google Scholar 

  12. Elliott MC, Zarins B, Powell JW et al (2011) Hamstring muscle strains in professional football players: a 10-year review. Am J Sports Med 39:843–850

    Article  PubMed  Google Scholar 

  13. Englund EK, Reiter DA, Shahidi B et al (2022) Intravoxel incoherent motion magnetic resonance imaging in skeletal muscle: review and future directions. J Magn Reson Imaging 55:988–1012

    Article  PubMed  Google Scholar 

  14. Gast LV, Baier LM, Chaudry O et al (2022) Assessing muscle-specific potassium concentrations in human lower leg using potassium magnetic resonance imaging. NMR Biomed. https://doi.org/10.1002/nbm.4819

  15. Guermazi A, Roemer FW, Robinson P et al (2017) Imaging of muscle injuries in sports medicine: sports imaging series. Radiology 285:1063

    Article  PubMed  Google Scholar 

  16. Hammon M, Grossmann S, Linz P et al (2015) 3 Tesla (23)Na magnetic resonance imaging during aerobic and anaerobic exercise. Acad Radiol 22:1181–1190

    Article  PubMed  Google Scholar 

  17. Hayashi D, Hamilton B, Guermazi A et al (2012) Traumatic injuries of thigh and calf muscles in athletes: role and clinical relevance of MR imaging and ultrasound. Insights Imaging 3:591–601

    Article  PubMed  PubMed Central  Google Scholar 

  18. Heiss R, Guermazi A, Jarraya M et al (2018) The epidemiology of MRI-detected pelvic injuries in athletes in the Rio de Janeiro 2016 Summer Olympics. Eur J Radiol 105:56–64

    Article  PubMed  Google Scholar 

  19. Heiss R, Kellermann M, Swoboda B et al (2018) Effect of compression garments on the development of delayed-onset muscle soreness: a multimodal approach using contrast-enhanced ultrasound and acoustic radiation force impulse Elastography. J Orthop Sports Phys Ther 48:887–894

    Article  PubMed  Google Scholar 

  20. Hoger SA, Gast LV, Marty B et al (2022) Sodium ((23) na) and quantitative hydrogen ((1) H) parameter changes in muscle tissue after eccentric exercise and in delayed-onset muscle soreness (DOMS) assessed with magnetic resonance imaging (MRI). NMR Biomed. https://doi.org/10.1002/nbm.4840

  21. Hooijmans MT, Monte JRC, Froeling M et al (2020) Quantitative MRI reveals microstructural changes in the upper leg muscles after running a marathon. J Magn Reson Imaging 52:407–417

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hotfiel T, Freiwald J, Hoppe MW et al (2018) Advances in delayed-onset muscle soreness (DOMS): part I: pathogenesis and diagnostics. Sportverletz Sportschaden 32:243–250

    Article  PubMed  Google Scholar 

  23. Hotfiel T, Heiss R, Swoboda B et al (2018) Contrast-enhanced ultrasound as a new investigative tool in diagnostic imaging of muscle injuries—a pilot study evaluating conventional ultrasound, CEUS, and findings in MRI. Clin J Sport Med 28:332–338

    Article  PubMed  Google Scholar 

  24. Hotfiel T, Hoppe MW, Heiss R et al (2021) Quantifiable contrast-enhanced ultrasound explores the role of protection, rest, ice (cryotherapy), compression and elevation (PRICE) therapy on Microvascular blood flow. Ultrasound Med Biol 47:1269–1278

    Article  PubMed  Google Scholar 

  25. Hotfiel T, Kellermann M, Swoboda B et al (2018) Application of acoustic radiation force impulse elastography in imaging of delayed onset muscle soreness: a comparative analysis with 3T MRI. J Sport Rehabil 27:348–356

    Article  PubMed  Google Scholar 

  26. https://Essr.Org/Content-Essr/Uploads/2016/10/Essr-Mri-Protocols-Hamstrings.Pdf. Zugegriffen: 23.Dez. 2022

  27. https://Essr.Org/Content-Essr/Uploads/2016/10/Essr-Mri-Protocols-Thigh-Calf.Pdf. Zugegriffen: 23. Dez. 2022

  28. Janka R (2018) Everyday orientation: publishing new protocol recommendations on measurement sequences for joint-MRI. Rofo Fortschr Rontg 190:289

    Google Scholar 

  29. Jarvinen TA, Jarvinen TL, Kaariainen M et al (2005) Muscle injuries: biology and treatment. Am J Sports Med 33:745–764

    Article  PubMed  Google Scholar 

  30. Kneeland JP (1997) MR imaging of muscle and tendon injury. Eur J Radiol 25:198–208

    Article  CAS  PubMed  Google Scholar 

  31. Lee JC, Mitchell AW, Healy JC (2012) Imaging of muscle injury in the elite athlete. Br J Radiol 85:1173–1185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Meixner CR, Nagel AM, Hoger SA et al (2022) Muscle perfusion and the effect of compression garments in delayed-onset muscle soreness assessed with arterial spin labeling magnetic resonance imaging. Quant Imaging Med Surg 12:4462–4473

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mueller-Wohlfahrt HW, Haensel L, Mithoefer K et al (2013) Terminology and classification of muscle injuries in sport: the Munich consensus statement. Br J Sports Med 47:342–350

    Article  PubMed  Google Scholar 

  34. Ntoulia A, Barnewolt CE, Doria AS et al (2021) Contrast-enhanced ultrasound for musculoskeletal indications in children. Pediatr Radiol 51:2303–2323

    Article  PubMed  Google Scholar 

  35. Peetrons P (2002) Ultrasound of muscles. Eur Radiol 12:35–43

    Article  CAS  PubMed  Google Scholar 

  36. Pollock N, James SL, Lee JC et al (2014) British athletics muscle injury classification: a new grading system. Br J Sports Med 48:1347–1351

    Article  PubMed  Google Scholar 

  37. Reurink G, Almusa E, Goudswaard GJ et al (2015) No association between fibrosis on magnetic resonance imaging at return to play and hamstring reinjury risk. Am J Sports Med 43:1228–1234

    Article  PubMed  Google Scholar 

  38. Reurink G, Brilman EG, De Vos RJ et al (2015) Magnetic resonance imaging in acute hamstring injury: can we provide a return to play prognosis? Sports Med 45:133–146

    Article  PubMed  Google Scholar 

  39. Reurink G, Goudswaard GJ, Tol JL et al (2014) MRI observations at return to play of clinically recovered hamstring injuries. Br J Sports Med 48:1370–1376

    Article  PubMed  Google Scholar 

  40. Riexinger A, Laun FB, Hoger SA et al (2021) Effect of compression garments on muscle perfusion in delayed-onset muscle soreness: A quantitative analysis using intravoxel incoherent motion MR perfusion imaging. NMR Biomed 34:e4487

    Article  PubMed  Google Scholar 

  41. Sanfilippo JL, Silder A, Sherry MA et al (2013) Hamstring strength and morphology progression after return to sport from injury. Med Sci Sports Exerc 45:448–454

    Article  PubMed  PubMed Central  Google Scholar 

  42. Silder A, Heiderscheit BC, Thelen DG et al (2008) MR observations of long-term musculotendon remodeling following a hamstring strain injury. Skelet Radiol 37:1101–1109

    Article  Google Scholar 

  43. Wangensteen A, Guermazi A, Tol JL et al (2018) New MRI muscle classification systems and associations with return to sport after acute hamstring injuries: a prospective study. Eur Radiol 28:3532–3541

    Article  PubMed  Google Scholar 

  44. Wangensteen A, Tol JL, Roemer FW et al (2017) Intra- and interrater reliability of three different MRI grading and classification systems after acute hamstring injuries. Eur J Radiol 89:182–190

    Article  PubMed  Google Scholar 

  45. Zaeske C, Brueggemann GP, Willwacher S et al (2022) The behaviour of T2* and T2 relaxation time in extrinsic foot muscles under continuous exercise: A prospective analysis during extended running. PLoS ONE 17:e264066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Heiss.

Ethics declarations

Interessenkonflikt

R. Heiss, R. Janka, M. Uder, T. Hotfiel, L. Gast, A.M. Nagel und F.W. Roemer geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heiss, R., Janka, R., Uder, M. et al. Bildgebung von Muskelverletzungen im Sport. Radiologie 63, 249–258 (2023). https://doi.org/10.1007/s00117-023-01118-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-023-01118-7

Schlüsselwörter

Keywords

Navigation