Skip to main content
Log in

Kardiale MRT bei angeborenen Herzfehlern

Vom Fetus zum Erwachsenen

Cardiac MRI of congenital heart disease

From fetus to adult

  • Leitthema
  • Published:
Die Radiologie Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Die kardiale Magnetresonanztomographie (MRT) ist ein wichtiges Untersuchungsverfahren bei Patienten mit angeborenen Herzfehlern unterschiedlicher Altersgruppen.

Ziel der Arbeit

Die Arbeit bietet einen Überblick über die klinisch verbreiteten Sequenzen für die MRT-Diagnostik angeborener Herzfehler, zeigt technische Entwicklungen auf und demonstriert zentrale Aspekte der Befundung an einzelnen Herzfehlern.

Material und Methoden

Darstellung epidemiologischer Daten, Zusammenfassung klinischer Studien zur Sequenztechnik und klinischen Anwendung sowie Demonstration klinischer Beispiele.

Ergebnisse

Das breite Spektrum angeborener Herzfehler erfordert die Verwendung unterschiedlicher Sequenzen, die abhängig von Patientenalter oder Therapiestand modifiziert werden können. Mittels Cine-Bildgebung werden funktionelle und volumetrische kardiale Aspekte erfasst, Phasenkontrastflussmessungen erlauben die Beurteilung von vaskulären Flussverhältnissen, und verschiedene Techniken der MR-Angiographie stellen die thorakalen Gefäße mit hoher zeitlicher und örtlicher Auflösung dar. Neue Entwicklungen ermöglichen die hochaufgelöste Gefäßdarstellung ohne Kontrastmittel, die Erfassung zusätzlicher hämodynamischer Parameter oder die Untersuchung des fetalen Herzens.

Diskussion

Die kardiale MRT kann sowohl bei Kindern als auch bei Erwachsenen mit angeborenen Herzfehlern angewendet werden. In Kenntnis des Therapiestands und operationsspezifischer Komplikationen können mittels unterschiedlicher Sequenzen viele klinische Fragestellungen gezielt beantwortet werden.

Abstract

Background

Cardiac magnetic resonance imaging (MRI) is an important diagnostic tool for initial diagnostic workup and follow-up of patients with congenital heart disease (CHD) of different age groups.

Objectives

This review provides an overview of clinically applied MRI sequences for the assessment of CHD, highlights technical developments, and demonstrates key aspects of reporting in specific heart defects.

Materials and methods

Presentation of epidemiologic data, summary of studies on MRI sequences and their clinical application, and demonstration of clinical examples.

Results

The broad spectrum of congenital heart defects requires the use of various sequences, which can be modified depending on patient age or treatment status. Cine imaging can be used to assess cardiac function and volumes, phase contrast flow measurements allow for the assessment of vessel hemodynamics, and various techniques of MR angiography allow visualization of the thoracic vessels with high spatiotemporal resolution. New developments allow high-resolution vascular imaging without the need for contrast agents, assessment of additional hemodynamic parameters, or fetal cardiac MRI.

Conclusion

Cardiac MRI can be employed in children as well as in adults with CHD. By using different sequences and considering the treatment status and surgery-related complications, the vast majority of clinical questions can be answered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Abbreviations

bSSFP:

Balanced steady-state free precession

EMAH:

Erwachsene mit angeborenem Herzfehler

FOV:

Field of view

GRE:

Gradientenecho

SNR:

Signal-to-noise ratio

T:

Tesla

Literatur

  1. Schwedler G, Lindinger A, Lange PE et al (2011) Frequency and spectrum of congenital heart defects among live births in Germany: a study of the competence network for congenital heart defects. Clin Res Cardiol 100:1111–1117

    Article  PubMed  Google Scholar 

  2. Neidenbach R, Achenbach S, Andonian C et al (2021) Systematic assessment of health care perception in adults with congenital heart disease in Germany. Cardiovasc Diagn Ther 11:481–491

    Article  PubMed  PubMed Central  Google Scholar 

  3. Radbruch A, Paech D, Gassenmaier S et al (2021) 1.5 vs 3 tesla magnetic resonance imaging: a review of favorite clinical applications for both field strengths—part 2. Invest Radiol 56:692–704

    Article  PubMed  Google Scholar 

  4. Rajiah P, Bolen MA (2014) Cardiovascular MR imaging at 3 T: opportunities, challenges, and solutions. Radiographics 34:1612–1635

    Article  PubMed  Google Scholar 

  5. Sarikouch S, Peters B, Gutberlet M et al (2010) Sex-specific pediatric percentiles for ventricular size and mass as reference values for cardiac MRI: assessment by steady-state free-precession and phase-contrast MRI flow. Circ Cardiovasc Imaging 3:65–76

    Article  PubMed  Google Scholar 

  6. Hudsmith† L, Petersen† S, Francis J et al (2005) Normal human left and right ventricular and left atrial dimensions using steady state free precession magnetic resonance imaging. J Cardiovasc Magn Reson 7:775–782

    Article  Google Scholar 

  7. Fratz S, Chung T, Greil GF et al (2013) Guidelines and protocols for cardiovascular magnetic resonance in children and adults with congenital heart disease: SCMR expert consensus group on congenital heart disease. J Cardiovasc Magn Reson 15:51

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lotz J, Meier C, Leppert A, Galanski M (2002) Cardiovascular flow measurement with phase-contrast MR imaging: basic facts and implementation. Radiographics 22:651–671

    Article  PubMed  Google Scholar 

  9. Rizk J (2021) 4D flow MRI applications in congenital heart disease. Eur Radiol 31:1160–1174

    Article  PubMed  Google Scholar 

  10. Secinaro A, Ntsinjana H, Tann O et al (2011) Cardiovascular magnetic resonance findings in repaired anomalous left coronary artery to pulmonary artery connection (ALCAPA). J Cardiovasc Magn Reson 13:27

    Article  PubMed  PubMed Central  Google Scholar 

  11. Noel CV, Krishnamurthy R, Masand P et al (2018) Myocardial stress perfusion MRI: experience in pediatric and young-adult patients following arterial switch operation utilizing regadenoson. Pediatr Cardiol 39:1249–1257

    Article  PubMed  Google Scholar 

  12. Wald RM, Haber I, Wald R et al (2009) Effects of regional dysfunction and late gadolinium enhancement on global right ventricular function and exercise capacity in patients with repaired tetralogy of Fallot. Circulation 119:1370–1377

    Article  PubMed  PubMed Central  Google Scholar 

  13. Babu-Narayan SV, Kilner PJ, Li W et al (2006) Ventricular fibrosis suggested by cardiovascular magnetic resonance in adults with repaired tetralogy of fallot and its relationship to adverse markers of clinical outcome. Circulation 113:405–413

    Article  CAS  PubMed  Google Scholar 

  14. Bonnet D, Coltri A, Butera G et al (1999) Detection of transposition of the great arteries in fetuses reduces neonatal morbidity and mortality. Circulation 99:916–918

    Article  CAS  PubMed  Google Scholar 

  15. Kording F, Schoennagel BP, de Sousa MT et al (2018) Evaluation of a portable doppler ultrasound gating device for fetal cardiac MR imaging: initial results at 1.5T and 3T. Mag Resonance Med Sci 17:308–317

    Article  CAS  Google Scholar 

  16. Stout KK, Daniels CJ, Aboulhosn JA et al (2019) 2018 AHA/ACC guideline for the management of adults with congenital heart disease: executive summary. J Am Coll Cardiol 73:1494–1563

    Article  PubMed  Google Scholar 

  17. Valente AM, Geva T (2017) How to image repaired tetralogy of Fallot. Circ Cardiovasc Imaging 10:e4270

    Article  PubMed  Google Scholar 

  18. Niwa K, Siu SC, Webb GD, Gatzoulis MA (2002) Progressive aortic root dilatation in adults late after repair of tetralogy of Fallot. Circulation 106:1374–1378

    Article  PubMed  Google Scholar 

  19. Morgan CT, Mertens L, Grotenhuis H et al (2017) Understanding the mechanism for branch pulmonary artery stenosis after the arterial switch operation for transposition of the great arteries. Eur Heart J Cardiovasc Imaging 18:180–185

    Article  PubMed  Google Scholar 

  20. Rathod RH, Prakash A, Kim YY et al (2014) Cardiac magnetic resonance parameters predict transplantation-free survival in patients with Fontan circulation. Circ Cardiovasc Imaging 7:502–509

    Article  PubMed  PubMed Central  Google Scholar 

  21. Prakash A, Rathod RH, Powell AJ et al (2012) Relation of systemic-to-pulmonary artery collateral flow in single ventricle physiology to palliative stage and clinical status. Am J Cardiol 109:1038–1045

    Article  PubMed  PubMed Central  Google Scholar 

  22. Biko DM, DeWitt AG, Pinto EM et al (2019) MRI evaluation of lymphatic abnormalities in the neck and thorax after Fontan surgery: relationship with outcome. Radiology 291:774–780

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian A. Luetkens.

Ethics declarations

Interessenkonflikt

J.A. Luetkens ist als Referent für die Firma Philips Healthcare tätig und erhält Beraterhonorare von der Firma Bayer HealthCare. T.M. Vollbrecht gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Additional information

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vollbrecht, T.M., Luetkens, J.A. Kardiale MRT bei angeborenen Herzfehlern. Radiologie 62, 933–940 (2022). https://doi.org/10.1007/s00117-022-01062-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-022-01062-y

Schlüsselwörter

Keywords

Navigation