Skip to main content
Log in

Kardioonkologie – was leistet die MRT?

Inflammation, Fibrose, Outcome

Cardiooncology—usefulness of cardiac MRI

Inflammation, fibrosis, outcome

  • Leitthema
  • Published:
Die Radiologie Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Durch verbesserte Überlebenschancen bei vielen Krebserkrankungen werden die Patient*innen nach einer Chemo- oder Radiotherapie immer häufiger mit den Nebenwirkungen der eingesetzten Therapeutika konfrontiert. Diese potenziell kardiotoxischen Effekte können, falls nicht frühzeitig detektiert, zu einer irreversiblen Herzinsuffizienz führen.

Fragestellung

Dieser Artikel soll den derzeitigen Wissensstand zu dem Nutzen der kardialen Magnetresonanztomographie (MRT) auf dem Gebiet der Kardioonkologie darstellen und einen Überblick über die Vorteile der MRT zur Analyse von Herzfunktion und von entzündlichen und fibrotischen Veränderungen des Myokards geben.

Material und Methoden

Zuerst erfolgten eine Analyse und Auswertung der bisherigen Studienlage. Expertenempfehlungen aus verschiedenen Positionspapieren wurden ausgewertet und subsummiert. Zuletzt wurde ein MRT-Protokoll für kardioonkologische Fragestellungen diskutiert.

Ergebnisse

Bis zu 20 % der Patient*innen leiden an kardiotoxischen Komplikationen einer Chemotherapie oder Bestrahlung. Besonders bei Patient*innen mit kardiovaskulären Risikofaktoren wird eine prä- und posttherapeutische Messung der Herzfunktion angeraten. Die kardiale MRT wird bei insuffizienter echokardiographischer Bildqualität zur Funktionsanalyse empfohlen, jedoch stellt sie auch eine exzellente Methode zur weiterführenden Gewebeanalyse dar.

Diskussion

Die bisherigen Positionspapiere empfehlen die kardiale MRT als Ausweichmöglichkeit, falls echokardiographische Untersuchungen unzureichend sind. Besonders Patient*innen mit einer Reduktion der echokardiographisch gemessenen Herzfunktion könnten von einer frühzeitigen Einschätzung von entzündlichen oder narbigen Veränderungen mittels kardialer MRT profitieren.

Abstract

Background

With rapidly increasing survival chances of cancer patients, the potential side effects of cancer therapeutics are increasingly relevant and a potentially lifelong issue. If cardiotoxic effects are not detected at a reversible stage, this might result in irreversible heart failure.

Objectives

This article will portray the current state of knowledge on the use of cardiac magnetic resonance imaging (cardiac MRI) in the field of cardio-oncology. The aim is to provide an overview of the advantages of cardiac MRI to determine myocardial function and analyze inflammatory or fibrotic myocardial changes.

Materials and methods

Current studies on this topic were collected and evaluated. Expert recommendations from various position papers were reviewed and summarized. Lastly, an MRI protocol to assess potential cardiotoxic effects of cancer therapeutics was discussed.

Results

Up to 20% of patients are reported to suffer from cancer therapeutics-related cardiac dysfunction (CTRCD). Especially those with cardiovascular risk factors should receive pre- and posttherapeutic monitoring of heart function. Cardiac MRI is currently suggested as an imaging tool to analyze myocardial function if echocardiographic assessment is insufficient. However, cardiac MRI is also an excellent method for additional tissue analysis.

Conclusion

Current consensus statements recommend cardiac MRI as optional in cases where echocardiography image quality is not adequate. Nevertheless, patients with reduced heart function on echocardiography might benefit from early assessment of inflammatory or fibrotic changes due to CTRCD using cardiac MRI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Abbreviations

Cine SSFP:

Cine Steady-State Free Precession

CTRCD:

Cancer therapeutics-related cardiac dysfunction

ECV:

Extrazelluläres Volumen

EF:

Ejektionsfraktion

Kardiale MRT:

Kardiale Magnetresonanztomographie

LGE:

Late-Gadolinium-Enhancement

MAP:

Mitogen-activated protein

VEGF:

Vascular endothelial growth factor

Literatur

  1. Allemani C, Matsuda T, Di Carlo V et al (2018) Global surveillance of trends in cancer survival 2000–14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet 391:1023–1075

    Article  PubMed  PubMed Central  Google Scholar 

  2. Armstrong GT, Joshi VM, Ness KK et al (2015) Comprehensive echocardiographic detection of treatment-related cardiac dysfunction in adult survivors of childhood cancer: results from the st. Jude lifetime cohort study. J Am Coll Cardiol 65:2511–2522

    Article  PubMed  PubMed Central  Google Scholar 

  3. Blessberger H, Binder T (2010) Two dimensional speckle tracking echocardiography: clinical applications. Heart 96:2032–2040

    Article  PubMed  Google Scholar 

  4. Drafts BC, Twomley KM, D’Agostino R Jr et al (2013) Low to moderate dose anthracycline-based chemotherapy is associated with early noninvasive imaging evidence of subclinical cardiovascular disease. JACC Cardiovasc Imaging 6:877–885

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ferreira VM, Schulz-Menger J, Holmvang G et al (2018) Cardiovascular magnetic resonance in nonischemic myocardial inflammation: expert recommendations. J Am Coll Cardiol 72:3158–3176

    Article  PubMed  Google Scholar 

  6. Friedrich MG, Sechtem U, Schulz-Menger J et al (2009) Cardiovascular magnetic resonance in myocarditis: a JACC white paper. J Am Coll Cardiol 53:1475–1487

    Article  PubMed  PubMed Central  Google Scholar 

  7. Galan-Arriola C, Lobo M, Vilchez-Tschischke JP et al (2019) Serial magnetic resonance imaging to identify early stages of anthracycline-induced cardiotoxicity. J Am Coll Cardiol 73:779–791

    Article  PubMed  Google Scholar 

  8. Giusca S, Steen H, Montenbruck M et al (2021) Multi-parametric assessment of left ventricular hypertrophy using late gadolinium enhancement, T1 mapping and strain-encoded cardiovascular magnetic resonance. J Cardiovasc Magn Reson 23:92

    Article  PubMed  PubMed Central  Google Scholar 

  9. Henson KE, Reulen RC, Winter DL et al (2016) Cardiac mortality among 200 000 five-year survivors of cancer diagnosed at 15 to 39 years of age: the teenage and young adult cancer survivor study. Circulation 134:1519

    Article  PubMed  PubMed Central  Google Scholar 

  10. Jensen BV, Skovsgaard T, Nielsen SL (2002) Functional monitoring of anthracycline cardiotoxicity: a prospective, blinded, long-term observational study of outcome in 120 patients. Ann Oncol 13:699–709

    Article  CAS  PubMed  Google Scholar 

  11. Klein C, Nekolla SG, Bengel FM et al (2002) Assessment of myocardial viability with contrast-enhanced magnetic resonance imaging: comparison with positron emission tomography. Circulation 105:162–167

    Article  PubMed  Google Scholar 

  12. Kosaraju A, Goyal A, Grigorova Y et al (2022) Left ventricular ejection fraction. StatPearls, Treasure Island

    Google Scholar 

  13. Lehmann LH, Frohling S (2020) Mechanisms of cardiotoxicity of oncological therapies. Internist (Berl) 61:1132–1139

    Article  CAS  Google Scholar 

  14. Mahmood SS, Fradley MG, Cohen JV et al (2018) Myocarditis in patients treated with immune checkpoint inhibitors. J Am Coll Cardiol 71:1755–1764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Modi K, Chen KH, Okasha O et al (2020) Myocardial damage assessed by late gadolinium enhancement on cardiovascular magnetic resonance imaging in cancer patients treated with anthracyclines and/or trastuzumab. Circulation 142:A17442

    Article  Google Scholar 

  16. Muehlberg F, Funk S, Zange L et al (2018) Native myocardial T1 time can predict development of subsequent anthracycline-induced cardiomyopathy. ESC Heart Fail 5:620–629

    Article  PubMed  PubMed Central  Google Scholar 

  17. Neilan TG, Coelho-Filho OR, Shah RV et al (2013) Myocardial extracellular volume by cardiac magnetic resonance imaging in patients treated with anthracycline-based chemotherapy. Am J Cardiol 111:717–722

    Article  CAS  PubMed  Google Scholar 

  18. O’Quinn R, Ferrari VA, Daly R et al (2021) Cardiac magnetic resonance in cardio-oncology: advantages, importance of expediency, and considerations to navigate pre-authorization. J Am Coll Cardiol CardioOnc 3:191–200

    Google Scholar 

  19. Ong G, Brezden-Masley C, Dhir V et al (2018) Myocardial strain imaging by cardiac magnetic resonance for detection of subclinical myocardial dysfunction in breast cancer patients receiving trastuzumab and chemotherapy. Int J Cardiol 261:228–233

    Article  PubMed  Google Scholar 

  20. Plana JC, Galderisi M, Barac A et al (2014) Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 15:1063–1093

    Article  PubMed  PubMed Central  Google Scholar 

  21. Quante AS, Ming C, Rottmann M et al (2016) Projections of cancer incidence and cancer-related deaths in Germany by 2020 and 2030. Cancer Med 5:2649–2656

    Article  PubMed  PubMed Central  Google Scholar 

  22. Tahir E, Azar M, Shihada S et al (2022) Myocardial injury detected by T1 and T2 mapping on CMR predicts subsequent cancer therapy-related cardiac dysfunction in patients with breast cancer treated by epirubicin-based chemotherapy or left-sided RT. Eur Radiol 32:1853–1865

    Article  CAS  PubMed  Google Scholar 

  23. Taylor AJ, Salerno M, Dharmakumar R et al (2016) T1 mapping: basic techniques and clinical applications. JACC Cardiovasc Imaging 9:67–81

    Article  PubMed  Google Scholar 

  24. Thavendiranathan P, Negishi T, Somerset E et al (2021) Strain-guided management of potentially cardiotoxic cancer therapy. J Am Coll Cardiol 77:392–401

    Article  CAS  PubMed  Google Scholar 

  25. Thavendiranathan P, Zhang L, Zafar A et al (2021) Myocardial T1 and T2 mapping by magnetic resonance in patients with immune checkpoint inhibitor-associated myocarditis. J Am Coll Cardiol 77:1503–1516

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zamorano JL, Lancellotti P, Rodriguez Munoz D et al (2016) 2016 ESC position paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice guidelines: the task force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur Heart J 37:2768–2801

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enver Tahir.

Ethics declarations

Interessenkonflikt

J. Erley, A. Beitzen-Heineke und E. Tahir geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erley, J., Beitzen-Heineke, A. & Tahir, E. Kardioonkologie – was leistet die MRT?. Radiologie 62, 941–946 (2022). https://doi.org/10.1007/s00117-022-01055-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-022-01055-x

Schlüsselwörter

Keywords

Navigation