Skip to main content
Log in

Positronen-Emissions-Tomographie/Computertomographie (PET/CT) beim multiplen Myelom

Positron emission tomography/computed tomography (PET/CT) in multiple myeloma

  • Leitthema
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Die Bildgebung spielt beim Management des multiplen Myeloms (MM) eine zentrale Rolle. Neben morphologischen Bildgebungsmethoden, wie Ganzkörper-Röntgenaufnahme (Pariser Schema), Computertomographie (CT) und Magnetresonanztomographie (MRT), wird zunehmend die Positronen-Emissions-Tomographie/CT (PET/CT) unter Verwendung von 18F‑Fluorodeoxyglukose (18F‑FDG) als Radiotracer eingesetzt.

Ziel der Arbeit

Ziel dieses Übersichtsartikels ist es, die wichtigsten Anwendungen der PET/CT in der Diagnose und Behandlung des MM zu beschreiben und Hinweise zu deren Auswertung zu geben.

Material und Methoden

Hintergrundwissen und Leitlinienempfehlungen zur PET-basierten Bildgebung des MM werden erläutert und durch aktuelle Studienergebnisse ergänzt.

Ergebnisse

Die 18F‑FDG-PET/CT gilt derzeit nicht als Standardmethode für die Diagnostik des MM in Deutschland, sie ist aber ein sehr leistungsfähiges diagnostisches Tool für den Nachweis von medullären und extramedullären Myelommanifestationen, ein zuverlässiger Prädiktor für das Überleben sowie zur Beurteilung des Therapieansprechens. Zudem spielt sie bei der Bewertung der minimalen Resterkrankung („minimal residual disease“, MRD) eine bedeutende Rolle. Andererseits begrenzen praktische Herausforderungen wie geringe lokale Verfügbarkeit und hohe Kosten den weit verbreiteten Einsatz der PET/CT. Darüber hinaus erschweren falsch-negative bzw. seltener auch falsch-positive Ergebnisse sowie die Heterogenität der MM-Präsentation die PET/CT-Bildanalyse.

Schlussfolgerung

Die PET/CT hat einen hohen Stellenwert bei der Diagnose, Prognose und Bewertung des Therapieansprechens von MM. Daher wird erwartet, dass die Rolle dieser Modalität beim Management der Krankheit in naher Zukunft noch weiter zunehmen wird.

Abstract

Background

Imaging plays a pivotal role in the management of multiple myeloma (MM). Besides morphological imaging methods, such as whole-body X‑ray, computed tomography (CT) and magnetic resonance imaging (MRI), the hybrid modality positron emission tomography/CT (PET/CT) using the glucose analogue 18F‑fluorodeoxyglucose (18F‑FDG) as radiotracer is increasingly used.

Objectives

Aim of this review article is to outline the major applications of PET/CT in the diagnosis and management of MM, and to provide hints on the reading and interpretation.

Materials and methods

Background knowledge and guideline recommendations on imaging of MM are outlined and complemented by recent study results.

Results

Although 18F‑FDG PET/CT is not currently considered a standard method for the diagnosis of MM, it is a very powerful diagnostic tool for the detection of medullary and extramedullary disease, a reliable predictor of survival and the most robust modality for treatment response evaluation. Moreover, it plays a significant role in minimal residual disease (MRD) assessment. On the other hand, practical considerations on local availability and costs limit the widespread use of PET/CT. In addition, false-negative and the seldom false-positive results and the heterogeneity of MM presentation inevitably make interpretation of PET/CT images challenging.

Conclusions

PET/CT has a high value in the diagnosis, prognosis, and assessment of treatment response in patients with MM. Therefore, the role of the modality in the management of the disease is expected to increase in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. de Waal EGM, Glaudemans AWJM, Schröder CP, Vellenga E, Slart RHJA (2017) Nuclear medicine imaging of multiple myeloma, particularly in the relapsed setting. Eur J Nucl Med Mol Imaging 44:332–341. https://doi.org/10.1007/s00259-016-3576-1

    Article  CAS  PubMed  Google Scholar 

  2. Rajkumar SV, Dimopoulos MA, Palumbo A et al (2014) International myeloma working group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol 15:e538–548. https://doi.org/10.1016/S1470-2045(14)70442-5

    Article  PubMed  Google Scholar 

  3. Cavo M, Terpos E, Nanni C et al (2017) Role of 18F-FDG PET/CT in the diagnosis and management of multiple myeloma and other plasma cell disorders: a consensus statement by the international myeloma working group. Lancet Oncol 18:e206–e217. https://doi.org/10.1016/S1470-2045(17)30189-4

    Article  PubMed  Google Scholar 

  4. Zamagni E, Nanni C, Patriarca F et al (2007) A prospective comparison of 18F-fluorodeoxyglucose positron emission tomography-computed tomography, magnetic resonance imaging and whole-body planar radiographs in the assessment of bone disease in newly diagnosed multiple myeloma. Haematologica 92:50–55. https://doi.org/10.3324/haematol.10554

    Article  PubMed  Google Scholar 

  5. van Lammeren-Venema D, Regelink JC, Riphagen II, Zweegman S, Hoekstra OS, Zijlstra JM (2012) 18F-fluoro-deoxyglucose positron emission tomography in assessment of myeloma-related bone disease: a systematic review. Cancer 118:1971–1981. https://doi.org/10.1002/cncr.26467

    Article  PubMed  Google Scholar 

  6. Lu YY, Chen JH, Lin WY et al (2012) FDG PET or PET/CT for detecting intramedullary and extramedullary lesions in multiple myeloma: a systematic review and meta-analysis. Clin Nucl Med 37:833–837. https://doi.org/10.1097/RLU.0b013e31825b2071

    Article  PubMed  Google Scholar 

  7. Moreau P, Attal M, Caillot D et al (2017) Prospective evaluation of magnetic resonance imaging and [18F]fluorodeoxyglucose positron emission tomography-computed tomography at diagnosis and before maintenance therapy in symptomatic patients with multiple myeloma included in the IFM/DFCI 2009 Trial: results of the IMAJEM study. J Clin Oncol 35:2911–2918. https://doi.org/10.1200/JCO.2017.72.2975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Westerland O, Amlani A, Kelly-Morland C et al (2020) Comparison of the diagnostic performance and impact on management of 18F-FDG PET/CT and whole-body MRI in multiple myeloma. Eur J Nucl Med Mol Imaging 48:2558–2565. https://doi.org/10.1007/s00259-020-05182-2

    Article  Google Scholar 

  9. Bartel TB, Haessler J, Brown TL et al (2009) F18-fluorodeoxyglucose positron emission tomography in the context of other imaging techniques and prognostic factors in multiple myeloma. Blood 114:2068–2076. https://doi.org/10.1182/blood-2009-03-213280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zamagni E, Patriarca F, Nanni C et al (2011) Prognostic relevance of 18‑F FDG PET/CT in newly diagnosed multiple myeloma patients treated with up-front autologous transplantation. Blood 118:5989–5995. https://doi.org/10.1182/blood-2011-06-361386

    Article  CAS  PubMed  Google Scholar 

  11. Han S, Woo S, Kim YI, Yoon DH, Ryu JS (2021) Prognostic value of 18F-fluorodeoxyglucose positron emission tomography/computed tomography in newly diagnosed multiple myeloma: a systematic review and meta-analysis. Eur Radiol 31:152–162. https://doi.org/10.1007/s00330-020-07177-x

    Article  CAS  PubMed  Google Scholar 

  12. Siontis B, Kumar S, Dispenzieri A et al (2015) Positron emission tomography-computed tomography in the diagnostic evaluation of smoldering multiple myeloma: identification of patients needing therapy. Blood Cancer J 5:e364

    Article  CAS  Google Scholar 

  13. Zamagni E, Nanni C, Gay F et al (2016) 18F-FDG PET/CT focal, but not osteolytic, lesions predict the progression of smoldering myeloma to active disease. Leukemia 30:417–422. https://doi.org/10.1038/leu.2015.291

    Article  CAS  PubMed  Google Scholar 

  14. Usmani SZ, Mitchell A, Waheed S et al (2013) Prognostic implications of serial 18-fluoro-deoxyglucose emission tomography in multiple myeloma treated with total therapy 3. Blood 121:1819–1823. https://doi.org/10.1182/blood-2012-08-451690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Davies FE, Rosenthal A, Rasche L et al (2018) Treatment to suppression of focal lesions on positron emission tomography-computed tomography is a therapeutic goal in newly diagnosed multiple myeloma. Haematologica 103:1047–1053. https://doi.org/10.3324/haematol.2017.177139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Patriarca F, Carobolante F, Zamagni E et al (2015) The role of positron emission tomography with 18F-fluorodeoxyglucose integrated with computed tomography in the evaluation of patients with multiple myeloma undergoing allogeneic stem cell transplantation. Biol Blood Marrow Transplant 21:1068–1073. https://doi.org/10.1016/j.bbmt.2015.03.001

    Article  PubMed  Google Scholar 

  17. Yokoyama K, Tsuchiya J, Tateishi U (2021) Comparison of [18F]FDG PET/CT and MRI for treatment response assessment in multiple myeloma: a meta-analysis. Diagnostics (Basel) 11:706. https://doi.org/10.3390/diagnostics11040706

    Article  CAS  Google Scholar 

  18. Kumar S, Paiva B, Anderson KC et al (2016) International myeloma working group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol 17:e328–e346. https://doi.org/10.1016/S1470-2045(16)30206-6

    Article  PubMed  Google Scholar 

  19. Zamagni E, Tacchetti P, Barbato S, Cavo M (2020) Role of imaging in the evaluation of minimal residual disease in multiple myeloma patients. J Clin Med 9:3519. https://doi.org/10.3390/jcm9113519

    Article  CAS  PubMed Central  Google Scholar 

  20. Zamagni E, Nanni C, Mancuso K et al (2015) PET/CT improves the definition of complete response and allows to detect otherwise unidentifiable skeletal progression in multiple myeloma. Clin Cancer Res 21:4384–4390. https://doi.org/10.1158/1078-0432.CCR-15-0396

    Article  CAS  PubMed  Google Scholar 

  21. Rasche L, Alapat D, Kumar M et al (2019) Combination of flow cytometry and functional imaging for monitoring of residual disease in myeloma. Leukemia 33:1713–1722. https://doi.org/10.1038/s41375-018-0329-0

    Article  CAS  PubMed  Google Scholar 

  22. Alonso R, Cedena MT, Gómez-Grande A et al (2019) Imaging and bone marrow assessments improve minimal residual disease prediction in multiple myeloma. Am J Hematol 94:853–861. https://doi.org/10.1002/ajh.25507

    Article  PubMed  Google Scholar 

  23. Rasche L, Angtuaco E, McDonald JE et al (2017) Low expression of hexokinase‑2 is associated with false-negative FDG-positron emission tomography in multiple myeloma. Blood 130:30–34. https://doi.org/10.1182/blood-2017-03-774422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nanni C, Zamagni E, Versari A et al (2016) Image interpretation criteria for FDG PET/CT in multiple myeloma: a new proposal from an Italian expert panel. IMPeTus (Italian myeloma criteria for PET use). Eur J Nucl Med Mol Imaging 43:414–421. https://doi.org/10.1007/s00259-015-3200-9

    Article  CAS  PubMed  Google Scholar 

  25. Dimitrakopoulou-Strauss A (2014) PET-CT in der nuklearmedizinischen Diagnostik des multiplen Myeloms [PET-CT for nuclear medicine diagnostics of multiple myeloma. Radiologe 54:564–566–71. https://doi.org/10.1007/s00117-013-2629-8

    Article  CAS  PubMed  Google Scholar 

  26. Sachpekidis C, Goldschmidt H, Dimitrakopoulou-Strauss A (2019) Positron emission tomography (PET) radiopharmaceuticals in multiple myeloma. Molecules 25:134. https://doi.org/10.3390/molecules25010134

    Article  CAS  PubMed Central  Google Scholar 

  27. Mesguich C, Fardanesh R, Tanenbaum L, Chari A, Jagannath S, Kostakoglu L (2014) State of the art imaging of multiple myeloma: comparative review of FDG PET/CT imaging in various clinical settings. Eur J Radiol 83:2203–2223. https://doi.org/10.1016/j.ejrad.2014.09.012

    Article  PubMed  Google Scholar 

  28. Fonti R, Larobina M, Del Vecchio S et al (2012) Metabolic tumor volume assessed by 18F-FDG PET/CT for the prediction of outcome in patients with multiple myeloma. J Nucl Med 53:1829–1835. https://doi.org/10.2967/jnumed.112.106500

    Article  CAS  PubMed  Google Scholar 

  29. McDonald JE, Kessler MM, Gardner MW et al (2017) Assessment of total lesion glycolysis by (18)F FDG PET/CT significantly improves prognostic value of GEP and ISS in myeloma. Clin Cancer Res 23:1981–1987. https://doi.org/10.1158/1078-0432.CCR-16-0235

    Article  CAS  PubMed  Google Scholar 

  30. Sachpekidis C, Merz M, Kopp-Schneider A et al (2019) Quantitative dynamic 18F-fluorodeoxyglucose positron emission tomography/computed tomography before autologous stem cell transplantation predicts survival in multiple myeloma. Haematologica 104:e420–e423. https://doi.org/10.3324/haematol.2018.213041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zamagni E, Nanni C, Dozza L et al (2021) Standardization of 18F-FDG-PET/CT according to Deauville criteria for metabolic complete response definition in newly diagnosed multiple myeloma. J Clin Oncol 39(2):116–125. https://doi.org/10.1200/JCO.20.00386

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos Sachpekidis.

Ethics declarations

Interessenkonflikt

C. Sachpekidis und A. Dimitrakopoulou-Strauss geben an, dass kein Interessenkonflikt besteht. H. Goldschmidt gibt folgende konkurrierende Interessen an: Grants and/or provision of Investigational Medicinal Product: Amgen, BMS, Celgene, Chugai, Dietmar-Hopp-Foundation, Janssen, John Hopkins University, Sanofi. Research Support (Institutions): Amgen, BMS, Celgene, Chugai, Janssen, Incyte, Molecular Partners, Merck Sharp and Dohme (MSD), Sanofi, Mundipharma, Takeda, Novartis. Advisory Boards (Institutions): Adaptive Biotechnology, Amgen, BMS, Celgene, Janssen, Sanofi, Takeda. Honoraria (Speakers Bureaus): Amgen, ArtTempi, BMS, Celgene, Chugai, GlaxoSmithKline (GSK), Janssen, Novartis, Omnia Med Deutschland, Sanofi.

Alle angewandten Verfahren stehen im Einklang mit den ethischen Normen der verantwortlichen Kommission für Forschung am Menschen (institutionell und national) und mit der Deklaration von Helsinki von 1975 in der revidierten Fassung von 2008. Alle Patienten wurden erst nach erfolgter Aufklärung und Einwilligung in die Studie eingeschlossen.

Additional information

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sachpekidis, C., Goldschmidt, H. & Dimitrakopoulou-Strauss, A. Positronen-Emissions-Tomographie/Computertomographie (PET/CT) beim multiplen Myelom. Radiologe 62, 20–29 (2022). https://doi.org/10.1007/s00117-021-00948-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-021-00948-7

Schlüsselwörter

Keywords

Navigation