Skip to main content

Bildgebung bei Tumorprädispositionssyndromen

Imaging of tumor predisposition syndromes

Zusammenfassung

Klinisches Problem

Tumorprädispositionssyndrome (TPS) sind eine heterogene Gruppe von genetisch bedingten Krebserkrankungen. Von den rund 2200 malignen Erkrankungen im Kindesalter in Deutschland entstehen ca. 10 % auf der Grundlage einer erblichen Veranlagung, wobei TPS vermutlich unterdiagnostiziert werden. Der Fokus des Übersichtsartikels liegt auf der Bildgebung bei Li-Fraumeni-Syndrom, Neurofibromatosen, tuberöser Sklerose, Großwuchs- und neuroendokrinen Syndromen.

Radiologische Standardverfahren

Um Tumoren frühzeitig zu detektieren, sind regelmäßige, für das jeweilige TPS spezifische Früherkennungsmaßnahmen erforderlich. Hierbei kommt der Sonographie und der Magnetresonanztomographie (MRT), insbesondere der Ganzkörper-MRT (GK-MRT), eine entscheidende Bedeutung zu.

Methodische Innovationen

Innovative MRT-Techniken können Bildqualität und Patientenkomfort steigern. Die Untersuchungszeit ist durch optimierte Beschleunigungsfaktoren, gegenüber Bewegung robuste radiäre Sequenzen und die gemeinsame Akquisition und Auslese mehrerer Schichten während einer Anregung signifikant reduzierbar. Somit können kürzere MRT-Untersuchungen bei jüngeren Kindern auch ohne Anästhesie durchführt werden.

Empfehlung für die Praxis

Regelmäßige Früherkennung mittels Sonographie und MRT kann Morbidität und Mortalität bei TPS reduzieren.

Abstract

Clinical issue

Tumor predisposition syndromes (TPS) are a heterogeneous group of genetic cancers. About 10% of the approximately 2200 malignancies in the childhood in Germany develop due to an inherited disposition, whereby TPS may be underdiagnosed. The focus of this review is set on imaging of Li–Fraumeni syndrome, neurofibromatoses, tuberous sclerosis, overgrowth, and neuroendocrine syndromes.

Standard radiological methods

In order to detect tumors at an early stage, screening at specific time intervals for each TPS are required. Ultrasonography and magnetic resonance imaging (MRI), especially whole-body MRI, are particularly important imaging modalities.

Methodological innovations

Innovative MRI techniques can increase image quality and patient comfort. MRI acquisition time can be significantly reduced through optimized acceleration factors, motion robust radial sequences and joint acquisition and readout of multiple slices during excitation. Thus, shorter MRI examinations can be performed in younger children without anesthesia.

Practical recommendation

Regular screening with ultrasound and MRI can reduce the morbidity and mortality of the patients affected with TPS.

This is a preview of subscription content, access via your institution.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. 1.

    Aedma SK, Kasi A (2021) Li-Fraumeni syndrome. StatPearls, Treasure Island

    Google Scholar 

  2. 2.

    Ahlawat S, Blakeley JO, Langmead S et al (2020) Current status and recommendations for imaging in neurofibromatosis type 1, neurofibromatosis type 2, and schwannomatosis. Skelet Radiol 49:199–219

    Google Scholar 

  3. 3.

    de Andrade KC, Frone MN, Wegman-Ostrosky T et al (2019) Variable population prevalence estimates of germline TP53 variants: a gnomAD-based analysis. Hum Mutat 40:97–105

    PubMed  Google Scholar 

  4. 4.

    Ballinger ML, Best A, Mai PL et al (2017) Baseline surveillance in Li-Fraumeni syndrome using whole-body magnetic resonance imaging: a meta-analysis. JAMA Oncol 3:1634–1639

    PubMed  Google Scholar 

  5. 5.

    Blumfield E, Swenson DW, Iyer RS et al (2019) Gadolinium-based contrast agents – review of recent literature on magnetic resonance imaging signal intensity changes and tissue deposits, with emphasis on pediatric patients. Pediatr Radiol 49:448–457

    PubMed  Google Scholar 

  6. 6.

    Bougeard G, Renaux-Petel M, Flaman JM et al (2015) Revisiting Li-Fraumeni syndrome from TP53 mutation carriers. J Clin Oncol 33:2345–2352

    CAS  PubMed  Google Scholar 

  7. 7.

    Brodeur GM, Nichols KE, Plon SE et al (2017) Pediatric cancer predisposition and surveillance: an overview, and a tribute to Alfred G. Knudson Jr. Clin Cancer Res 23:e1–e5

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Calvez S, Levy R, Calvez R et al (2020) Focal areas of high signal intensity in children with neurofibromatosis type 1: expected evolution on MRI. AJNR Am J Neuroradiol 41:1733–1739

    CAS  PubMed  Google Scholar 

  9. 9.

    Chavhan GB, Caro-Dominguez P (2016) Diffusion-weighted imaging in pediatric body magnetic resonance imaging. Pediatr Radiol 46:847–857

    PubMed  Google Scholar 

  10. 10.

    Chompret A, Brugieres L, Ronsin M et al (2000) P53 germline mutations in childhood cancers and cancer risk for carrier individuals. Br J Cancer 82:1932–1937

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Cullinan N, Villani A, Mourad S et al (2020) An eHealth decision-support tool to prioritize referral practices for genetic evaluation of patients with Wilms tumor. Int J Cancer 146:1010–1017

    CAS  PubMed  Google Scholar 

  12. 12.

    De Blank PMK, Fisher MJ, Liu GT et al (2017) Optic pathway gliomas in neurofibromatosis type 1: an update: surveillance, treatment indications, and biomarkers of vision. J Neuroophthalmol 37(Suppl 1):S23–S32

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Dutzmann CM, Pajtler KW, Pfister SM (2018) Genetische Krebsprädispositionssyndrome. Onkol Heute 6:44–53

    Google Scholar 

  14. 14.

    Edmondson AC, Kalish JM (2015) Overgrowth syndromes. J Pediatr Genet 4:136–143

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Evans DG, Baser ME, McGaughran J et al (2002) Malignant peripheral nerve sheath tumours in neurofibromatosis 1. J Med Genet 39:311–314

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Farschtschi S, Mautner VF, McLean ACL et al (2020) The Neurofibromatoses. Dtsch Arztebl Int 117:354–360

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    Frebourg T, Bajalica Lagercrantz S, Oliveira C et al (2020) Guidelines for the Li-Fraumeni and heritable TP53-related cancer syndromes. Eur J Hum Genet 28:1379–1386

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Gimpel C, Bergmann C, Brinkert F et al (2020) Kidney cysts and cystic nephropathies in children – a consensus guideline by 10 German medical societies. Klin Padiatr 232:228–248

    PubMed  Google Scholar 

  19. 19.

    Grajo JR, Paspulati RM, Sahani DV et al (2016) Multiple endocrine neoplasia syndromes: a comprehensive imaging review. Radiol Clin North Am 54:441–451

    PubMed  Google Scholar 

  20. 20.

    Gross AM, Wolters PL, Dombi E et al (2020) Selumetinib in children with inoperable plexiform neurofibromas. N Engl J Med 382:1430–1442

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Hanafy AK, Mujtaba B, Roman-Colon AM et al (2020) Imaging features of adrenal gland masses in the pediatric population. Abdom Radiol 45:964–981

    Google Scholar 

  22. 22.

    Herath M, Parameswaran V, Thompson M et al (2019) Paediatric and young adult manifestations and outcomes of multiple endocrine neoplasia type 1. Clin Endocrinol 91:633–638

    CAS  Google Scholar 

  23. 23.

    Jaimes C, Kirsch JE, Gee MS (2018) Fast, free-breathing and motion-minimized techniques for pediatric body magnetic resonance imaging. Pediatr Radiol 48:1197–1208

    PubMed  Google Scholar 

  24. 24.

    Kaemmerer D, Posorski N, Hommann M et al (2014) Hereditary syndromes of neuroendocrine tumours. Zentralbl Chir 139:415–427

    CAS  PubMed  Google Scholar 

  25. 25.

    Kratz CP, Achatz MI, Brugieres L et al (2017) Cancer screening recommendations for individuals with Li-Fraumeni syndrome. Clin Cancer Res 23:e38–e45

    CAS  PubMed  Google Scholar 

  26. 26.

    Krohmer S, Sorge I, Krausse A et al (2010) Whole-body MRI for primary evaluation of malignant disease in children. Eur J Radiol 74:256–261

    CAS  PubMed  Google Scholar 

  27. 27.

    Launbjerg K, Bache I, Galanakis M et al (2017) von Hippel-Lindau development in children and adolescents. Am J Med Genet A 173:2381–2394

    PubMed  Google Scholar 

  28. 28.

    Lin DD, Barker PB (2006) Neuroimaging of phakomatoses. Semin Pediatr Neurol 13:48–62

    PubMed  Google Scholar 

  29. 29.

    Mai PL, Malkin D, Garber JE et al (2012) Li-Fraumeni syndrome: report of a clinical research workshop and creation of a research consortium. Cancer Genet 205:479–487

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Mentzel HJ, Seidel J, Fitzek C et al (2005) Pediatric brain MRI in neurofibromatosis type I. Eur Radiol 15:814–822

    PubMed  Google Scholar 

  31. 31.

    Monsalve J, Kapur J, Malkin D et al (2011) Imaging of cancer predisposition syndromes in children. Radiographics 31:263–280

    PubMed  Google Scholar 

  32. 32.

    Rednam SP, Erez A, Druker H et al (2017) Von Hippel-Lindau and hereditary pheochromocytoma/paraganglioma syndromes: clinical features, genetics, and surveillance recommendations in childhood. Clin Cancer Res 23:e68–e75

    CAS  PubMed  Google Scholar 

  33. 33.

    Reith W, Korner H (2013) Von Hippel-Lindau syndrome. Radiologe 53:1104–1106

    CAS  PubMed  Google Scholar 

  34. 34.

    Renz DM, Kumpel S, Bottcher J et al (2018) Comparison of unenhanced T1-weighted signal intensities within the dentate nucleus and the globus pallidus after serial applications of gadopentetate dimeglumine versus gadobutrol in a pediatric population. Invest Radiol 53:119–127

    CAS  PubMed  Google Scholar 

  35. 35.

    Renz DM, Mentzel HJ (2018) Imaging of abdominal tumors in childhood and adolescence: Part I: background, hepatic, splenic and pancreatic tumors. Radiologe 58:595–608

    CAS  PubMed  Google Scholar 

  36. 36.

    Renz DM, Mentzel HJ (2018) Imaging of abdominal tumors in childhood and adolescence: Part II: relevant intra-abdominal and retroperitoneal tumor entities. Radiologe 58:673–686

    CAS  PubMed  Google Scholar 

  37. 37.

    Ripperger T, Bielack SS, Borkhardt A et al (2017) Childhood cancer predisposition syndromes – a concise review and recommendations by the Cancer Predisposition Working Group of the Society for Pediatric Oncology and Hematology. Am J Med Genet A 173:1017–1037

    PubMed  Google Scholar 

  38. 38.

    Ripperger T, Schlegelberger B (2018) Genetic predisposition to childhood cancer. Pathologe 39:306–310

    CAS  PubMed  Google Scholar 

  39. 39.

    Saade-Lemus S, Degnan AJ, Acord MR et al (2019) Whole-body magnetic resonance imaging of pediatric cancer predisposition syndromes: special considerations, challenges and perspective. Pediatr Radiol 49:1506–1515

    PubMed  Google Scholar 

  40. 40.

    Schaefer JF, Berthold LD, Hahn G et al (2019) Whole-body MRI in children and adolescents – S1 guideline. Rofo 191:618–625

    PubMed  Google Scholar 

  41. 41.

    Schäfer JF, Tsiflikas I (2014) Ganzkörper-MRT bei Kindern. Radiol Up2date 14:259–278

    Google Scholar 

  42. 42.

    Skolnik AD, Loevner LA, Sampathu DM et al (2016) Cranial nerve schwannomas: diagnostic imaging approach. Radiographics 36:1463–1477

    PubMed  Google Scholar 

  43. 43.

    Stanulla M, Erdmann F, Kratz CP (2020) Risikofaktoren für Krebserkrankungen im Kindes- und Jugendalter. Monatsschr Kinderheilkd 169:30–38

    Google Scholar 

  44. 44.

    Villani A, Shore A, Wasserman JD et al (2016) Biochemical and imaging surveillance in germline TP53 mutation carriers with Li-Fraumeni syndrome: 11 year follow-up of a prospective observational study. Lancet Oncol 17:1295–1305

    CAS  PubMed  Google Scholar 

  45. 45.

    Wang KH, Kupa J, Duffy KA et al (2019) Diagnosis and management of Beckwith-Wiedemann syndrome. Front Pediatr 7:562

    CAS  PubMed  Google Scholar 

  46. 46.

    Winter N, Rattay TW, Axer H et al (2017) Ultrasound assessment of peripheral nerve pathology in neurofibromatosis type 1 and 2. Clin Neurophysiol 128:702–706

    PubMed  Google Scholar 

  47. 47.

    Yilmaz U, Altmeyer K, Meyer S (2013) Tuberous sclerosis complex. Radiologe 53:1091–1098

    CAS  PubMed  Google Scholar 

  48. 48.

    Zulfiqar M, Lin M, Ratkowski K et al (2021) Imaging features of neurofibromatosis type 1 in the abdomen and pelvis. AJR Am J Roentgenol 216:241–251

    PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to K. Glutig.

Ethics declarations

Interessenkonflikt

K. Glutig, A. Pfeil und D.M. Renz geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Glutig, K., Pfeil, A. & Renz, D.M. Bildgebung bei Tumorprädispositionssyndromen. Radiologe 61, 658–666 (2021). https://doi.org/10.1007/s00117-021-00861-z

Download citation

Schlüsselwörter

  • Krebserkrankung
  • Tumorscreening
  • Sonographie
  • Ganzkörper-Magnetresonanztomographie
  • Li-Fraumeni-Syndrom

Keywords

  • Cancer
  • Tumor screening
  • Sonography
  • Whole-body magnetic resonance imaging
  • Li-Fraumeni syndrome