Skip to main content
Log in

„Chemical exchange saturation transfer“ (CEST)

Magnetresonanztomographie in der onkologischen Diagnostik

Chemical exchange saturation transfer (CEST)

Magnetic resonance imaging in diagnostic oncology

  • Leitthema
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Die Kontrasterzeugung mittels „chemical exchange saturation transfer“ (CEST) ist ein zuletzt rasant an Bedeutung gewinnendes Forschungsfeld in der Magnetresonanztomographie (MRT), das großes Potenzial für die klinische Anwendung besitzt.

Methode

Dieses Review behandelt die methodischen Grundlagen und fasst die klinischen Erfahrungswerte der bis dato durchgeführten onkologischen CEST-Bildgebungsstudien zusammen.

Ergebnisse und Schlussfolgerung

Durch die selektive Anregung von Metabolit-gebundenen Protonen und den nachfolgenden Magnetisierungstransfer auf freies Wasser können mittels CEST-MRT niedrig konzentrierte Metaboliten wie Peptide oder Glukose detektiert werden. Durch diese Technik können zusätzliche Informationen über den Metabolismus und das Mikromilieu von Geweben, ohne den Bedarf an konventionellen Kontrastmitteln oder radioaktiven Tracern, gewonnen werden. Insbesondere im neuroonkologischen Kontext konnte gezeigt werden, dass mittels CEST-MRT eine verbesserte Einschätzung der Malignität von Tumoren möglich ist und dass die Proteinkontraste Hinweise auf das frühe Ansprechen von Tumoren vor und in der ersten Verlaufskontrolle nach Therapie liefern könnten.

Kernaussagen

Die CEST-MRT ermöglicht die indirekte Detektion von Metaboliten ohne radioaktive Tracer oder Kontrastmittel. Klinische Erfahrungswerte liegen insbesondere in der neuroonkologischen Bildgebung vor. Hier könnte die CEST-MRT eine verbesserte Einschätzung der Prognose und des Therapieansprechens ermöglichen.

Abstract

Background

Contrast generation by chemical exchange saturation transfer (CEST) is a recently emerging magnetic resonance imaging (MRI) research field with high clinical potential.

Methods

This review covers the methodological principles and summarizes the clinical experience of CEST imaging studies in diagnostic oncology performed to date.

Results and conclusion

CEST enables the detection of lowly concentrated metabolites, such as peptides and glucose, through selective saturation of metabolite-bound protons and subsequent magnetization transfer to free water. This technology yields additional information about metabolic activity and the tissue microenvironment without the need for conventional contrast agents or radioactive tracers. Various studies, mainly conducted in patients with neuro-oncolgic diseases, suggest that this technology may aid to assess tumor malignancy as well as therapeutic response prior to and in the first follow-up after intervention.

Key points

CEST-MRI enables the indirect detection of metabolites without radioactive tracers or contrast agents. Clinical experience exists especially in the setting of neuro-oncologic imaging. In oncologic imaging, CEST-MRI may improve assessment of prognosis and therapy response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Wick W et al (2016) Long-term analysis of the NOA-04 randomized phase III trial of sequential radiochemotherapy of anaplastic glioma with PCV or temozolomide. Neuro Oncol 18(11):1529–1537

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Paz MF et al (2004) CpG island hypermethylation of the DNA repair enzyme methyltransferase predicts response to temozolomide in primary gliomas. Clin Cancer Res 10(15):4933–4938

    CAS  PubMed  Google Scholar 

  3. Brandes AA et al (2008) Disease progression or pseudoprogression after concomitant radiochemotherapy treatment: pitfalls in neurooncology. Neuro Oncol 10(3):361–367

    PubMed  PubMed Central  Google Scholar 

  4. Zikou A et al (2018) Radiation necrosis, pseudoprogression, pseudoresponse, and tumor recurrence: imaging challenges for the evaluation of treated gliomas. Contrast Media Mol Imaging. https://doi.org/10.1155/2018/6828396

    Article  PubMed  PubMed Central  Google Scholar 

  5. Morrow M, Waters J, Morris E (2011) MRI for breast cancer screening, diagnosis, and treatment. Lancet 378(9805):1804–1811

    PubMed  Google Scholar 

  6. Stabile A et al (2020) Multiparametric MRI for prostate cancer diagnosis: current status and future directions. Nat Rev Urol 17(1):41–61

    PubMed  Google Scholar 

  7. MacMahon H et al (2017) Guidelines for management of incidental pulmonary nodules detected on CT images: from the Fleischner society 2017. Radiology 284(1):228–243

    PubMed  Google Scholar 

  8. Farwell MD, Pryma DA, Mankoff DA (2014) PET/CT imaging in cancer: current applications and future directions. Cancer 120(22):3433–3445

    CAS  PubMed  Google Scholar 

  9. Bashir U et al (2015) PET/MRI in oncological imaging: state of the art. Diagnostics 5(3):333–357

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Hasebroock KM, Serkova NJ (2009) Toxicity of MRI and CT contrast agents. Expert Opin Drug Metab Toxicol 5(4):403–416

    CAS  PubMed  Google Scholar 

  11. Morzycki A, Bhatia A, Murphy KJ (2017) Adverse reactions to contrast material: a Canadian update. Can Assoc Radiol J 68(2):187–193

    PubMed  Google Scholar 

  12. Olchowy C et al (2017) The presence of the gadolinium-based contrast agent depositions in the brain and symptoms of gadolinium neurotoxicity—a systematic review. PLoS ONE 12(2):e171704

    PubMed  PubMed Central  Google Scholar 

  13. van Zijl PC, Yadav NN (2011) Chemical exchange saturation transfer (CEST): what is in a name and what isn’t? Magn Reson Med 65(4):927–948

    PubMed  PubMed Central  Google Scholar 

  14. Wu B et al (2016) An overview of CEST MRI for non-MR physicists. EJNMMI Phys 3(1):19

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu G et al (2013) Nuts and bolts of chemical exchange saturation transfer MRI. Nmr Biomed 26(7):810–828

    PubMed  PubMed Central  Google Scholar 

  16. Paech D, Schlemmer H‑P (2020) Clinical MR biomarkers. In: Schober O, Kiessling F, Debus J (Hrsg) Molecular imaging in oncology. Springer, Cham, S 719–745

    Google Scholar 

  17. Paech D, Radbruch A (2020) CEST, pH, and glucose imaging as markers for hypoxia and malignant transformation. In: Pope WB (Hrsg) Glioma imaging: physiologic, metabolic, and molecular approaches. Springer, Cham, S 161–172

    Google Scholar 

  18. Forsén S, Hoffman RA (1963) Study of moderately rapid chemical exchange reactions by means of nuclear magnetic double resonance. J Chem Phys 39(11):2892–2901

    Google Scholar 

  19. Zaiss M et al (2015) Relaxation-compensated CEST-MRI of the human brain at 7T: Unbiased insight into NOE and amide signal changes in human glioblastoma. Neuroimage 112:180–188

    PubMed  Google Scholar 

  20. Windschuh J et al (2015) Correction of B1-inhomogeneities for relaxation-compensated CEST imaging at 7 T. Nmr Biomed 28(5):529–537

    PubMed  Google Scholar 

  21. Hong X et al (2014) Quantitative multiparametric MRI assessment of glioma response to radiotherapy in a rat model. Neuro Oncol 16(6):856–867

    PubMed  Google Scholar 

  22. Jones KM, Pollard AC, Pagel MD (2018) Clinical applications of chemical exchange saturation transfer (CEST) MRI. J Magn Reson Imaging 47(1):11–27

    PubMed  Google Scholar 

  23. Scheidegger R, Wong ET, Alsop DC (2014) Contributors to contrast between glioma and brain tissue in chemical exchange saturation transfer sensitive imaging at 3 Tesla. Neuroimage 99:256–268

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Paech D et al (2014) Nuclear overhauser enhancement mediated chemical exchange saturation transfer imaging at 7 Tesla in glioblastoma patients. PLoS ONE 9(8):e104181

    PubMed  PubMed Central  Google Scholar 

  25. Zaiss M et al (2017) Downfield-NOE-suppressed amide-CEST-MRI at 7 Tesla provides a unique contrast in human glioblastoma. Magn Reson Med 77(1):196–208

    CAS  PubMed  Google Scholar 

  26. Paech D et al (2015) Nuclear Overhauser Enhancement imaging of glioblastoma at 7 Tesla: region specific correlation with apparent diffusion coefficient and histology. PLoS ONE 10(3):e121220

    PubMed  PubMed Central  Google Scholar 

  27. Schuenke P et al (2017) Simultaneous mapping of water shift and B1 (WASABI)-Application to field-Inhomogeneity correction of CEST MRI data. Magn Reson Med 77(2):571–580

    PubMed  Google Scholar 

  28. Goerke S et al (2019) Relaxation-compensated APT and rNOE CEST-MRI of human brain tumors at 3 T. Magn Reson Med 82(2):622–632

    CAS  PubMed  Google Scholar 

  29. Paech D et al (2018) Assessing the predictability of IDH mutation and MGMT methylation status in glioma patients using relaxation-compensated multipool CEST MRI at 7.0 T. Neuro Oncol 20(12):1661–1671. https://doi.org/10.1093/neuonc/noy073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhou J et al (2003) Amide proton transfer (APT) contrast for imaging of brain tumors. Magn Reson Med 50(6):1120–1126

    PubMed  Google Scholar 

  31. Jones CK et al (2006) Amide proton transfer imaging of human brain tumors at 3T. Magn Reson Med 56(3):585–592

    PubMed  Google Scholar 

  32. Wen PY et al (2010) Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 28(11):1963–1972

    PubMed  Google Scholar 

  33. Togao O et al (2014) Amide proton transfer imaging of adult diffuse gliomas: correlation with histopathological grades. Neuro Oncol 16(3):441–448

    CAS  PubMed  Google Scholar 

  34. Bai Y et al (2017) Noninvasive amide proton transfer magnetic resonance imaging in evaluating the grading and cellularity of gliomas. Oncotarget 8(4):5834–5842

    PubMed  Google Scholar 

  35. Sakata A et al (2015) Grading glial tumors with amide proton transfer MR imaging: different analytical approaches. J Neurooncol 122(2):339–348

    CAS  PubMed  Google Scholar 

  36. Choi YS et al (2017) Amide proton transfer imaging to discriminate between low- and high-grade gliomas: added value to apparent diffusion coefficient and relative cerebral blood volume. Eur Radiol 27(8):3181–3189

    PubMed  PubMed Central  Google Scholar 

  37. Dreher C et al (2019) Chemical exchange saturation transfer (CEST) signal intensity at 7T MRI of WHO IV° gliomas is dependent on the anatomic location. J Magn Reson Imaging 49(3):777–785

    PubMed  Google Scholar 

  38. Togao O et al (2017) Grading diffuse gliomas without intense contrast enhancement by amide proton transfer MR imaging: comparisons with diffusion- and perfusion-weighted imaging. Eur Radiol 27(2):578–588

    PubMed  Google Scholar 

  39. Heo HY et al (2016) Whole-brain amide proton transfer (APT) and nuclear overhauser enhancement (NOE) imaging in glioma patients using low-power steady-state pulsed chemical exchange saturation transfer (CEST) imaging at 7T. J Magn Reson Imaging 44(1):41–50

    PubMed  Google Scholar 

  40. Jones CK et al (2013) Nuclear Overhauser enhancement (NOE) imaging in the human brain at 7T. Neuroimage 77:114–124

    PubMed  Google Scholar 

  41. Jiang S et al (2017) Predicting IDH mutation status in grade II gliomas using amide proton transfer-weighted (APTw) MRI. Magn Reson Med 78(3):1100–1109

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Elkhaled A et al (2012) Magnetic resonance of 2‑hydroxyglutarate in IDH1-mutated low-grade gliomas. Sci Transl Med 4(116):116–ra5

    Google Scholar 

  43. Jalbert LE et al (2017) Metabolic profiling of IDH mutation and malignant progression in infiltrating glioma. Sci Rep 7:44792

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Sagiyama K et al (2014) In vivo chemical exchange saturation transfer imaging allows early detection of a therapeutic response in glioblastoma. Proc Natl Acad Sci U S A 111(12):4542–4547

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhou J et al (2011) Differentiation between glioma and radiation necrosis using molecular magnetic resonance imaging of endogenous proteins and peptides. Nat Med 17(1):130–134

    CAS  PubMed  Google Scholar 

  46. Park KJ et al (2016) Added value of amide proton transfer imaging to conventional and perfusion MR imaging for evaluating the treatment response of newly diagnosed glioblastoma. Eur Radiol 26(12):4390–4403

    PubMed  Google Scholar 

  47. Park JE et al (2016) Pre- and posttreatment glioma: comparison of amide proton transfer imaging with MR spectroscopy for biomarkers of tumor proliferation. Radiology 278(2):514–523

    PubMed  Google Scholar 

  48. Paech D et al (2019) Relaxation-compensated amide proton transfer (APT) MRI signal intensity is associated with survival and progression in high-grade glioma patients. Eur Radiol 29(9):4957–4967

    PubMed  Google Scholar 

  49. Mehrabian H et al (2018) Evaluation of glioblastoma response to therapy with chemical exchange saturation transfer. Int J Radiat Oncol Biol Phys 101(3):713–723

    CAS  PubMed  Google Scholar 

  50. Meissner JE et al (2019) Early response assessment of glioma patients to definitive chemoradiotherapy using chemical exchange saturation transfer imaging at 7 T. J Magn Reson Imaging 50(4):1268–1277

    PubMed  Google Scholar 

  51. Regnery S et al (2018) Chemical exchange saturation transfer MRI serves as predictor of early progression in glioblastoma patients. Oncotarget 9(47):28772–28783

    PubMed  PubMed Central  Google Scholar 

  52. Jia G et al (2011) Amide proton transfer MR imaging of prostate cancer: a preliminary study. J Magn Reson Imaging 33(3):647–654

    PubMed  PubMed Central  Google Scholar 

  53. Takayama Y et al (2016) Amide proton transfer (APT) magnetic resonance imaging of prostate cancer: comparison with Gleason scores. Magma 29(4):671–679

    CAS  PubMed  Google Scholar 

  54. Ohno Y et al (2018) Amide proton transfer-weighted imaging to differentiate malignant from benign pulmonary lesions: comparison with diffusion-weighted imaging and FDG-PET/CT. J Magn Reson Imaging 47(4):1013–1021

    PubMed  Google Scholar 

  55. Choi SH (2018) Can amide proton transfer MRI distinguish benign and malignant head and neck tumors? Radiology 288(3):791–792

    PubMed  Google Scholar 

  56. Zhang S et al (2018) CEST-Dixon for human breast lesion characterization at 3 T: a preliminary study. Magn Reson Med 80(3):895–903

    PubMed  PubMed Central  Google Scholar 

  57. Schmitt B et al (2011) A new contrast in MR mammography by means of chemical exchange saturation transfer (CEST) imaging at 3 Tesla: preliminary results. Rofo 183(11):1030–1036

    CAS  PubMed  Google Scholar 

  58. Dula AN et al (2013) Amide proton transfer imaging of the breast at 3 T: establishing reproducibility and possible feasibility assessing chemotherapy response. Magn Reson Med 70(1):216–224

    CAS  PubMed  Google Scholar 

  59. Zaric O et al (2019) 7T CEST MRI: A potential imaging tool for the assessment of tumor grade and cell proliferation in breast cancer. Magn Reson Imaging 59:77–87

    PubMed  Google Scholar 

  60. Krikken E et al (2018) Amide chemical exchange saturation transfer at 7 T: a possible biomarker for detecting early response to neoadjuvant chemotherapy in breast cancer patients. Breast Cancer Res 20(1):51

    PubMed  PubMed Central  Google Scholar 

  61. Krikken E et al (2019) Contradiction between amide-CEST signal and pH in breast cancer explained with metabolic MRI. Nmr Biomed 32(8):e4110

    PubMed  PubMed Central  Google Scholar 

  62. Loi L et al (2020) Relaxation-compensated CEST (chemical exchange saturation transfer) imaging in breast cancer diagnostics at 7T. Eur J Radiol 129:109068. https://doi.org/10.1016/j.ejrad.2020.109068

    Article  PubMed  Google Scholar 

  63. Xu X et al (2015) Dynamic glucose-enhanced (DGE) MRI: translation to human scanning and first results in glioma patients. Tomography 1(2):105–114

    PubMed  PubMed Central  Google Scholar 

  64. Chan KW et al (2012) Natural D‑glucose as a biodegradable MRI contrast agent for detecting cancer. Magn Reson Med 68(6):1764–1773

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Walker-Samuel S et al (2013) In vivo imaging of glucose uptake and metabolism in tumors. Nat Med 19(8):1067–1072

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Herz K et al (2019) T1ρ-based dynamic glucose-enhanced (DGEρ) MRI at 3 T: method development and early clinical experience in the human brain. Magn Reson Med 82(5):1832–1847

    CAS  PubMed  Google Scholar 

  67. Schuenke P et al (2017) Fast and quantitative T1ρ-weighted dynamic glucose enhanced MRI. Sci Rep 7:42093

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Paech D et al (2017) T1ρ-weighted dynamic glucose-enhanced MR imaging in the human brain. Radiology 285(3):914–922

    PubMed  Google Scholar 

  69. Rivlin M et al (2013) Molecular imaging of tumors and metastases using chemical exchange saturation transfer (CEST) MRI. Sci Rep 3:3045

    PubMed  PubMed Central  Google Scholar 

  70. Wang J et al (2016) Magnetic resonance imaging of glucose uptake and metabolism in patients with head and neck cancer. Sci Rep 6:30618

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Jin T et al (2018) Chemical exchange–sensitive spin-lock (CESL) MRI of glucose and analogs in brain tumors. Magn Reson Med 80(2):488–495

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Jin T, Kim SG (2014) Advantages of chemical exchange-sensitive spin-lock (CESL) over chemical exchange saturation transfer (CEST) for hydroxyl–and amine–water proton exchange studies. NMR Biomed 27(11):1313–1324

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Schuenke P et al (2017) Adiabatically prepared spin-lock approach for T1ρ-based dynamic glucose enhanced MRI at ultrahigh fields. Magn Reson Med 78(1):215–225

    CAS  PubMed  Google Scholar 

Download references

Danksagung

Die Autoren möchten sich herzlich bei den Abteilungen von Herrn Professor Heinz-Peter Schlemmer, Herrn Professor Mark Ladd und Herrn Professor Peter Bachert für die sehr erfolgreiche, kontinuierliche und vertrauensvolle Zusammenarbeit bedanken. Die Forschungsstrukturen am DKFZ und Uniklinikum Heidelberg, mit der exzellenten methodischen Entwicklung und unmittelbaren Translation in die Praxis, schaffen ideale Bedingungen für die Erforschung und Translation neuer Bildgebungstechniken. Unser besonderer Dank gilt hierbei auch dem gesamten MTA-, IT-, Studien-, und Administrationsteam im FSE für die herausragende Unterstützung bei unseren Studien.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Paech.

Ethics declarations

Interessenkonflikt

D. Paech gibt an, dass wissenschaftliche Studien zur CEST-MRT unter seiner Leitung am Deutschen Krebsforschungszentrum durchgeführt werden, die durch die Deutsche Forschungsgemeinschaft (DFG) gefördert werden. N. von Knebel Doeberitz, S. Maksimovic, L. Loi und D. Paech geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

von Knebel Doeberitz, N., Maksimovic, S., Loi, L. et al. „Chemical exchange saturation transfer“ (CEST). Radiologe 61, 43–51 (2021). https://doi.org/10.1007/s00117-020-00786-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-020-00786-z

Schlüsselwörter

Keywords

Navigation