Was passiert eigentlich … in der Hybridbildgebung?

What actually happens … in hybrid imaging?

Zusammenfassung

Klinisches/methodisches Problem

Dieser Artikel soll die Neuerungen der Perfusionsbildgebung sowie weitere Anwendungsfelder bei der Hybridbildgebung des Herzens beleuchten.

Radiologische Standardverfahren

Die am meisten verwendeten Modalitäten in der Hybridbildgebung sind nach wie vor die Einzelphotonen-Emissions-Computertomographie („single photon emission computed tomography“, SPECT) und die Positronen-Emissions-Tomographie/Computertomographie (PET/CT). Häufig kommen Perfusionstracer und 18F‑Fluordeoxyglukose (FDG) zur Vitalitätsbildgebung zum Einsatz.

Methodische Innovationen

Zunehmende Verbreitung findet auch die Positronen-Emissions-Tomographie/Magnetresonanztomographie (PET/MRT). Zudem wird FDG auch vermehrt in der Bildgebung von infektiösen und inflammatorischen myokardialen Erkrankungen angewendet. Des Weiteren kommen neuartige Tracer, wie Amyloid-spezifische Tracer bei der kardialen Amyloidose, zum Einsatz.

Leistungsfähigkeit

Insgesamt ist ein zunehmender Einsatz hybrider Bildgebungsverfahren zu verzeichnen. Anwendungsgebiete sind die myokardiale Perfusionsbildgebung, aber auch inflammatorische und infektiöse Erkrankungen wie Endokarditis, Myokarditis und Sarkoidose sowie unterschätzte Erkrankungen wie die kardiale Amyloidose. Des Weiteren führt die Verwendung neuartiger Tracer zur Schaffung neuer Anwendungsfelder in der Hybridbildgebung.

Empfehlung für die Praxis

Die Hybridbildgebung aus myokardialer Perfusion und Gefäßdarstellung scheint insbesondere bei komplexen Fällen wie Mehrgefäßerkrankungen vorteilhaft zu sein. Bei infektiösen und inflammatorischen myokardialen Erkrankungen hat die FDG-PET/CT bzw. PET/MRT ihren Mehrwert klar belegt. Neue Anwendungsfelder scheinen sehr vielversprechend, müssen ihren Stellenwert allerdings noch eindeutig belegen.

Abstract

Clinical/methodological issue

The goal of this article is to shed light on innovations in perfusion imaging and the fields of application that have opened up in hybrid imaging of the heart.

Standard radiological methods

As before, the most commonly used modalities in hybrid imaging are single photon emission computed tomography (SPECT) and positron emission tomography/computed tomography (PET/CT). Perfusion tracers and the radioactively labeled glucose analog 18F‑fluorodeoxyglucose (FDG) are commonly used for vitality imaging.

Methodical innovations

Use of PET/MRI (magnetic resonance imaging) is becoming increasingly widespread. In addition, FDG is also increasingly applied in imaging infectious and inflammatory myocardial diseases. Furthermore, novel tracers are used, such as the amyloid-specific tracers in cardiac amyloidosis.

Performance

Overall, this development has led to an increasing use of hybrid imaging techniques. These still include myocardial perfusion imaging, but are also used in inflammatory and infectious diseases such as endocarditis, myocarditis and sarcoidosis, as well as in underestimated diseases such as cardiac amyloidosis. The use of tracers has led to the creation of new fields of application in hybrid imaging.

Practical recommendations

Hybrid imaging combining myocardial perfusion and coronary visualization seems to be particularly advantageous in complex cases such as multivessel disease. In infectious and inflammatory myocardial diseases, FDG PET/CT or PET/MRI has clearly demonstrated its added value. New fields of application are very promising, but their significance has yet to be clearly demonstrated.

This is a preview of subscription content, log in to check access.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. 1.

    Blumgart HL, Weiss S (1927) Studies on the velocity of blood flow. J Clin Invest 4(3):399–425

    CAS  Article  Google Scholar 

  2. 2.

    Carrea JR, Gleason G, Shaw J, Krontz B (1964) The direct diagnosis of myocardinal infarction by photoscanning after administration of CESIUM-131. Am Heart J 68:627–636

    CAS  Article  Google Scholar 

  3. 3.

    Lindner O, Burchert W, Buechel R, Schäfer WM, Arbeitsgemeinschaft „Kardiovaskuläre Nuklearmedizin“ der Deutschen Gesellschaft für Nuklearmedizin, AG20 „Nuklearkardiologische Diagnostik“ der Deutschen Gesellschaft für Kardiologie. (2019) Myocardial perfusion SPECT 2018 in Germany: results of the 8th survey. Nuklearmedizin 58(6):425–433

    Article  Google Scholar 

  4. 4.

    Knuuti J, Wijns W, Saraste A, Capodanno D, Barbato E, Funck-Brentano C et al (2020) 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J 41(3):407–477

    Article  Google Scholar 

  5. 5.

    Gaemperli O, Husmann L, Schepis T, Koepfli P, Valenta I, Jenni W et al (2009) Coronary CT angiography and myocardial perfusion imaging to detect flow-limiting stenoses: a potential gatekeeper for coronary revascularization? Eur Heart J 30(23):2921–2929

    Article  Google Scholar 

  6. 6.

    Liga R, Vontobel J, Rovai D, Marinelli M, Caselli C, Pietila M et al (2016) Multicentre multi-device hybrid imaging study of coronary artery disease: results from the EValuation of INtegrated Cardiac Imaging for the Detection and Characterization of Ischaemic Heart Disease (EVINCI) hybrid imaging population. Eur Heart J Cardiovasc Imaging 17(9):951–960

    Article  Google Scholar 

  7. 7.

    Rizvi A, Han D, Danad I, Hartaigh ÓB, Lee JH, Gransar H et al (2018) Diagnostic performance of hybrid cardiac imaging methods for assessment of obstructive coronary artery disease compared with stand-alone coronary computed Tomography Angiography: a meta-analysis. JACC Cardiovasc Imaging 11(4):589–599

    Article  Google Scholar 

  8. 8.

    Pazhenkottil AP, Nkoulou RN, Ghadri J‑R, Herzog BA, Buechel RR, Küest SM et al (2011) Prognostic value of cardiac hybrid imaging integrating single-photon emission computed tomography with coronary computed tomography angiography. Eur Heart J 32(12):1465–1471

    Article  Google Scholar 

  9. 9.

    Ghadri JR, Fiechter M, Fuchs TA, Scherrer A, Stehli J, Gebhard C et al (2013) Registry for the Evaluation of the PROgnostic value of a novel integrated imaging approach combining Single Photon Emission Computed Tomography with coronary calcification imaging (REPROSPECT). Eur Heart J Cardiovasc Imaging 14(4):374–380

    Article  Google Scholar 

  10. 10.

    Vitadello T, Kunze KP, Nekolla SG, Langwieser N, Bradaric C, Weis F et al (2020) Hybrid PET/MR imaging for the prediction of left ventricular recovery after percutaneous revascularisation of coronary chronic total occlusions. Eur J Nucl Med Mol Imaging. https://doi.org/10.1007/s00259-020-04877-w

    Article  PubMed  Google Scholar 

  11. 11.

    Lalani T, Chu VH, Park LP, Cecchi E, Corey GR, Durante-Mangoni E et al (2013) In-hospital and 1‑year mortality in patients undergoing early surgery for prosthetic valve endocarditis. JAMA Intern Med 173(16):1495–1504

    Article  Google Scholar 

  12. 12.

    Saby L, Laas O, Habib G, Cammilleri S, Mancini J, Tessonnier L et al (2013) Positron emission tomography/computed tomography for diagnosis of prosthetic valve endocarditis: increased valvular 18F-fluorodeoxyglucose uptake as a novel major criterion. J Am Coll Cardiol 61(23):2374–2382

    Article  Google Scholar 

  13. 13.

    Pizzi MN, Roque A, Fernández-Hidalgo N, Cuéllar-Calabria H, Ferreira-González I, Gonzàlez-Alujas MT et al (2015) Improving the diagnosis of infective endocarditis in prosthetic valves and Intracardiac devices with 18F-fluordeoxyglucose positron emission tomography/computed Tomography Angiography. Circulation 132(12):1113–1126

    Article  Google Scholar 

  14. 14.

    Habib G, Lancellotti P, Antunes MJ, Bongiorni MG, Casalta J‑P, Del Zotti F et al (2015) 2015 ESC guidelines for the management of infective endocarditisthe task force for the management of infective endocarditis of the European Society of Cardiology (ESC)endorsed by: European Association for Cardio-Thoracic Surgery (EACTS), the European Association of Nuclear Medicine (EANM). Eur Heart J 36(44):3075–3128

    Article  Google Scholar 

  15. 15.

    Salomäki SP, Saraste A, Kemppainen J, Bax JJ, Knuuti J, Nuutila P et al (2017) 18F-FDG positron emission tomography/computed tomography in infective endocarditis. J Nucl Cardiol 24(1):195–206

    Article  Google Scholar 

  16. 16.

    Sekiguchi M, Numao Y, Imai M, Furuie T, Mikami R (1980) Clinical and histopathological profile of sarcoidosis of the heart and acute idiopathic myocarditis. Concepts through a study employing endomyocardial biopsy. I. Sarcoidosis. Jpn Circ J 44(4):249–263

    CAS  Article  Google Scholar 

  17. 17.

    Birnie DH, Sauer WH, Bogun F, Cooper JM, Culver DA, Duvernoy CS et al (2014) HRS expert consensus statement on the diagnosis and management of arrhythmias associated with cardiac sarcoidosis. Heart Rhythm 11(7):1305–1323

    Article  Google Scholar 

  18. 18.

    Slart RHJA, Glaudemans AWJM, Lancellotti P, Hyafil F, Blankstein R, Schwartz RG et al (2018) A joint procedural position statement on imaging in cardiac sarcoidosis: from the Cardiovascular and Inflammation & Infection Committees of the European Association of Nuclear Medicine, the European Association of Cardiovascular Imaging, and the American Society of Nuclear Cardiology. J Nucl Cardiol 25(1):298–319

    Article  Google Scholar 

  19. 19.

    Blankstein R, Osborne M, Naya M, Waller A, Kim CK, Murthy VL et al (2014) Cardiac positron emission tomography enhances prognostic assessments of patients with suspected cardiac sarcoidosis. J Am Coll Cardiol 63(4):329–336

    Article  Google Scholar 

  20. 20.

    Schneider S, Batrice A, Rischpler C, Eiber M, Ibrahim T, Nekolla SG (2014) Utility of multimodal cardiac imaging with PET/MRI in cardiac sarcoidosis: implications for diagnosis, monitoring and treatment. Eur Heart J 35(5):312

    Article  Google Scholar 

  21. 21.

    Dweck MR, Abgral R, Trivieri MG, Robson PM, Karakatsanis N, Mani V et al (2018) Hybrid magnetic resonance imaging and positron emission tomography with fluorodeoxyglucose to diagnose active cardiac Sarcoidosis. JACC Cardiovasc Imaging 11(1):94–107

    Article  Google Scholar 

  22. 22.

    Vita T, Okada DR, Veillet-Chowdhury M, Bravo PE, Mullins E, Hulten E et al (2018) Complementary value of cardiac magnetic resonance imaging and positron emission tomography/computed tomography in the assessment of cardiac Sarcoidosis. Circ Cardiovasc Imaging 11(1):e7030

    Article  Google Scholar 

  23. 23.

    Slart R, Koopmans KP, Van PG, Kramer H, Groen HJM, Gan CT et al (2017) Somatostatin receptor based hybrid imaging in sarcoidosis. Eur J Hybrid Imaging 1(1):7–7

    Article  Google Scholar 

  24. 24.

    Friedrich MG, Sechtem U, Schulz-Menger J, Holmvang G, Alakija P, Cooper LT et al (2009) Cardiovascular magnetic resonance in myocarditis: a JACC white paper. J Am Coll Cardiol 53(17):1475–1487

    Article  Google Scholar 

  25. 25.

    Nensa F, Kloth J, Tezgah E, Poeppel TD, Heusch P, Goebel J et al (2018) Feasibility of FDG-PET in myocarditis: comparison to CMR using integrated PET/MRI. J Nucl Cardiol 25(3):785–794

    Article  Google Scholar 

  26. 26.

    Witteles RM, Bokhari S, Damy T, Elliott PM, Falk RH, Fine NM et al (2019) Screening for transthyretin amyloid cardiomyopathy in everyday practice. J Am Coll Cardiol 7(8):709–716

    Google Scholar 

  27. 27.

    Maurer MS, Schwartz JH, Gundapaneni B, Elliott PM, Merlini G, Waddington-Cruz M et al (2018) Tafamidis treatment for patients with transthyretin amyloid cardiomyopathy. N Engl J Med 379(11):1007–1016

    CAS  Article  Google Scholar 

  28. 28.

    Gillmore JD, Maurer MS, Falk RH, Merlini G, Damy T, Dispenzieri A et al (2016) Nonbiopsy diagnosis of cardiac transthyretin amyloidosis. Circulation 133(24):2404–2412

    CAS  Article  Google Scholar 

  29. 29.

    Dorbala S, Vangala D, Semer J, Strader C, Bruyere JR, Di Carli MF et al (2014) Imaging cardiac amyloidosis: a pilot study using 18F‑florbetapir positron emission tomography. Eur J Nucl Med Mol Imaging 41(9):1652–1662

    CAS  Article  Google Scholar 

  30. 30.

    Genovesi D, Vergaro G, Giorgetti A, Marzullo P, Scipioni M, Santarelli MF et al (2020) 18F]-Florbetaben PET/CT for differential diagnosis among cardiac immunoglobulin light chain, transthyretin amyloidosis, and mimicking conditions. JACC Cardiovasc Imaging. https://doi.org/10.1016/j.jcmg.2020.05.031

    Article  PubMed  Google Scholar 

  31. 31.

    Papathanasiou M, Kessler L, Carpinteiro A, Hagenacker T, Nensa F, Umutlu L et al (2020) 18F-flutemetamol positron emission tomography in cardiac amyloidosis. J Nucl Cardiol. https://doi.org/10.1007/s12350-020-02363-2

    Article  PubMed  Google Scholar 

  32. 32.

    Baratto L, Park SY, Hatami N, Gulaka P, Vasanawala S, Yohannan TK et al (2018) 18F-florbetaben whole-body PET/MRI for evaluation of systemic amyloid deposition. EJNMMI Res 8(1):66

    Article  Google Scholar 

  33. 33.

    Kim YJ, Ha S, Kim Y‑I (2020) Cardiac amyloidosis imaging with amyloid positron emission tomography: a systematic review and meta-analysis. J Nucl Cardiol 27(1):123–132. https://doi.org/10.1007/s12350-018-1365-x

    Article  PubMed  Google Scholar 

  34. 34.

    Humeres C, Frangogiannis NG (2019) Fibroblasts in the infarcted, remodeling, and failing heart. JACC Basic Transl Sci 4(3):449–467

    Article  Google Scholar 

  35. 35.

    Garin-Chesa P, Old LJ, Rettig WJ (1990) Cell surface glycoprotein of reactive stromal fibroblasts as a potential antibody target in human epithelial cancers. Proc Natl Acad Sci U S A 87(18):7235–7239

    CAS  Article  Google Scholar 

  36. 36.

    Lindner T, Loktev A, Altmann A, Giesel F, Kratochwil C, Debus J et al (2018) Development of quinoline-based theranostic ligands for the targeting of fibroblast activation protein. J Nucl Med 59(9):1415–1422

    CAS  Article  Google Scholar 

  37. 37.

    Totzeck M, Siebermair J, Rassaf T, Rischpler C (2019) Cardiac fibroblast activation detected by positron emission tomography/computed tomography as a possible sign of cardiotoxicity. Eur Heart J. https://doi.org/10.1093/eurheartj/ehz736

    Article  PubMed  Google Scholar 

  38. 38.

    Siebermair J, Köhler MI, Kupusovic J, Nekolla SG, Kessler L, Ferdinandus J et al (2020) Cardiac fibroblast activation detected by Ga-68 FAPI PET imaging as a potential novel biomarker of cardiac injury/remodeling. J Nucl Cardiol. https://doi.org/10.1007/s12350-020-02307-w

    Article  PubMed  Google Scholar 

  39. 39.

    Heckmann MB, Reinhardt F, Finke D, Katus HA, Haberkorn U, Leuschner F et al (2020) Relationship between cardiac fibroblast activation protein activity by positron emission tomography and cardiovascular disease. Circ Cardiovasc Imaging 13(9):e10628

    Article  Google Scholar 

  40. 40.

    Rischpler C, Nekolla SG (2016) PET/MR imaging in heart disease. PET Clin 11(4):465–477. https://doi.org/10.1016/j.cpet.2016.05.006

    Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Prof. Dr. med. C. Rischpler.

Ethics declarations

Interessenkonflikt

C. Rischpler, T. Schlosser, L. Umutlu, T. Rassaf und B.J. Krause geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rischpler, C., Schlosser, T., Umutlu, L. et al. Was passiert eigentlich … in der Hybridbildgebung?. Radiologe (2020). https://doi.org/10.1007/s00117-020-00779-y

Download citation

Schlüsselwörter

  • Herzerkrankungen
  • Myokarditis
  • Amyloidose
  • Positron emission tomography
  • Tracer

Keywords

  • Heart diseases
  • Myocarditis
  • Amyloidosis
  • Positron emission tomography
  • Radioactive tracers