Skip to main content
Log in

Thermoablation

Freund und Feind der Immuntherapie

Thermoablation

Friend and foe of immunotherapy

  • Leitthema
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

In den letzten Jahren häufen sich die wissenschaftlichen Hinweise, dass (thermo)ablative Verfahren das Potenzial haben, über eine Aktivierung des körpereigenen Immunsystems auch nicht direkt behandelte Metastasen im selben Organ – oder selbst andernorts im Körper – zu beeinflussen. Dieser Effekt wird in der Literatur als „abscopal effect“ beschrieben. Dieser „abscopal effect“ kommt jedoch nur in sehr unterschiedlicher Ausprägung vor – ein deutliches Ansprechen wird nur in Einzelfallbeschreibungen berichtet. Allerdings gibt es auch Berichte, die zeigen, dass nach Thermoablation Metastasierung und Tumorwachstum zunahmen – vermutlich ausgelöst durch einen gegenläufigen immunvermittelten Effekt. Parallel dazu haben immunmodulierende Therapien einen festen Platz in der systemischen Tumortherapie bekommen, da die Kombination aus klassischen Chemotherapien mit Immuntherapien erstaunliche Verbesserungen des Outcomes für die Patienten bewirken. Der logische Schritt war deshalb, Immuntherapien mit Ablationen zu verknüpfen, um die positiven Effekte zu verstärken.

Ziel der Arbeit

In diesem Beitrag werden die Wirkungen der Thermoablation auf das Immunsystem beschrieben, unterschiedliche ablative Verfahren vorgestellt und ein Ausblick auf die Kombination der beiden Therapieoptionen gegeben.

Abstract

Background

Evidence from multiple studies have shown the potential of thermal ablative therapies to induce regression of metastases and tumors which are distant from the treated metastases—within the same organ or even in other organs—the so-called abscopal effect. Unfortunately, this effect is most often weak and not always reproducible. Recent developments in systemic therapies showed that immunomodulating drugs are of major interest in patient-tailored tumor therapy due to the fact that they are able to enhance the treatment effect of conventional chemotherapy. Furthermore, several studies and reports showed that these immunomodulating therapies are also able to enhance the response of the immune system to the tumor—if combined with local ablative therapies—and trigger a systemic antitumor response. Unfortunately, there is also evidence that effects caused by thermal ablation can hamper the immune system and, therefore, increase tumor growth and tumor spread.

Objectives

In this article, the effects of thermal ablation in general are described, different (thermo-)ablative techniques are presented and a perspective of combination therapies is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Ahmad F, Gravante G, Bhardwaj N et al (2010) Changes in interleukin-1beta and 6 after hepatic microwave tissue ablation compared with radiofrequency, cryotherapy and surgical resections. Am J Surg 200:500–506

    CAS  PubMed  Google Scholar 

  2. Ahmad F, Gravante G, Bhardwaj N et al (2010) Large volume hepatic microwave ablation elicits fewer pulmonary changes than radiofrequency or cryotherapy. J Gastrointest Surg 14:1963–1968

    PubMed  Google Scholar 

  3. Ahmed M, Kumar G, Moussa M et al (2016) Hepatic radiofrequency ablation-induced stimulation of distant tumor growth is suppressed by c‑met inhibition. Radiology 279:103–117

    PubMed  Google Scholar 

  4. Basu S, Binder RJ, Suto R et al (2000) Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. Int Immunol 12:1539–1546

    CAS  PubMed  Google Scholar 

  5. den Brok MH, Sutmuller RP, Nierkens S et al (2006) Efficient loading of dendritic cells following cryo and radiofrequency ablation in combination with immune modulation induces anti-tumour immunity. Br J Cancer 95:896–905

    Google Scholar 

  6. Chang X, Zhang F, Liu T et al (2017) Neutrophil-to-lymphocyte ratio as an independent predictor for survival in patients with localized clear cell renal cell carcinoma after radiofrequency ablation: a propensity score matching analysis. Int Urol Nephrol 49:967–974

    PubMed  Google Scholar 

  7. Chang Z, Zheng J, Ma Y et al (2014) The neutrophil-to-lymphocyte ratio as a predictor for recurrence of colorectal liver metastases following radiofrequency ablation. Med Oncol 31:855

    PubMed  Google Scholar 

  8. Chen DS, Mellman I (2013) Oncology meets immunology: the cancer-immunity cycle. Immunity 39:1–10

    PubMed  Google Scholar 

  9. Chomarat P, Banchereau J, Davoust J et al (2000) IL‑6 switches the differentiation of monocytes from dendritic cells to macrophages. Nat Immunol 1:510–514

    CAS  PubMed  Google Scholar 

  10. Chu KF, Dupuy DE (2014) Thermal ablation of tumours: biological mechanisms and advances in therapy. Nat Rev Cancer 14:199–208

    CAS  PubMed  Google Scholar 

  11. Dan J, Zhang Y, Peng Z et al (2013) Postoperative neutrophil-to-lymphocyte ratio change predicts survival of patients with small hepatocellular carcinoma undergoing radiofrequency ablation. PLoS One 8:e58184

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Dressel R, Lubbers M, Walter L et al (1999) Enhanced susceptibility to cytotoxic T lymphocytes without increase of MHC class I antigen expression after conditional overexpression of heat shock protein 70 in target cells. Eur J Immunol 29:3925–3935

    CAS  PubMed  Google Scholar 

  13. Duffy AG, Ulahannan SV, Makorova-Rusher O et al (2017) Tremelimumab in combination with ablation in patients with advanced hepatocellular carcinoma. J Hepatol 66:545–551

    CAS  Google Scholar 

  14. Erinjeri JP, Thomas CT, Samoilia A et al (2013) Image-guided thermal ablation of tumors increases the plasma level of interleukin‑6 and interleukin-10. J Vasc Interv Radiol 24:1105–1112

    PubMed  PubMed Central  Google Scholar 

  15. Evrard S, Menetrier-Caux C, Biota C et al (2007) Cytokines pattern after surgical radiofrequency ablation of liver colorectal metastases. Gastroenterol Clin Biol 31:141–145

    CAS  Google Scholar 

  16. Facciorusso A, Del Prete V, Crucinio N et al (2016) Lymphocyte-to-monocyte ratio predicts survival after radiofrequency ablation for colorectal liver metastases. World J Gastroenterol 22:4211–4218

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Fietta AM, Morosini M, Passadore I et al (2009) Systemic inflammatory response and downmodulation of peripheral CD25+Foxp3+ T‑regulatory cells in patients undergoing radiofrequency thermal ablation for lung cancer. Hum Immunol 70:477–486

    CAS  PubMed  Google Scholar 

  18. Fisher DT, Appenheimer MM, Evans SS (2014) The two faces of IL‑6 in the tumor microenvironment. Semin Immunol 26:38–47

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Fu S, Zhang N, Yopp AC et al (2004) TGF-beta induces Foxp3 + T‑regulatory cells from CD4 + CD25-precursors. Am J Transplant 4:1614–1627

    CAS  PubMed  Google Scholar 

  20. Ghanamah M, Berber E, Siperstein A (2006) Pattern of carcinoembryonic antigen drop after laparoscopic radiofrequency ablation of liver metastasis from colorectal carcinoma. Cancer 107:149–153

    PubMed  Google Scholar 

  21. Haen SP, Gouttefangeas C, Schmidt D et al (2011) Elevated serum levels of heat shock protein 70 can be detected after radiofrequency ablation. Cell Stress Chaperones 16:495–504

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kim D, Erinjeri JP (2019) Postablation immune microenvironment: synergy between interventional oncology and immuno-oncology. Semin intervent Radiol 36:334–342

    PubMed  Google Scholar 

  23. Knutson KL, Disis ML (2005) Tumor antigen-specific T helper cells in cancer immunity and immunotherapy. Cancer Immunol Immunother 54:721–728

    CAS  PubMed  Google Scholar 

  24. Kroeze SG, van Melick HH, Nijkamp MW et al (2012) Incomplete thermal ablation stimulates proliferation of residual renal carcinoma cells in a translational murine model. BJU Int 110:E281–286

    PubMed  Google Scholar 

  25. Leibovici D, Zisman A, Lindner A et al (2005) PSA elevation during prostate cryosurgery and subsequent decline. Urol Oncol 23:8–11

    PubMed  Google Scholar 

  26. Nikfarjam M, Muralidharan V, Christophi C (2006) Altered growth patterns of colorectal liver metastases after thermal ablation. Surgery 139:73–81

    PubMed  Google Scholar 

  27. Nikfarjam M, Muralidharan V, Christophi C (2005) Mechanisms of focal heat destruction of liver tumors. J Surg Res 127:208–223

    PubMed  Google Scholar 

  28. Rozenblum N, Zeira E, Bulvik B et al (2015) Radiofrequency ablation: inflammatory changes in the periablative zone can induce global organ effects, including liver regeneration. Radiology 276:416–425

    PubMed  Google Scholar 

  29. Rozenblum N, Zeira E, Scaiewicz V et al (2015) Oncogenesis: an “off-target” effect of radiofrequency ablation. Radiology 276:426–432

    PubMed  Google Scholar 

  30. Sabel MS, Su G, Griffith KA et al (2010) Rate of freeze alters the immunologic response after cryoablation of breast cancer. Ann Surg Oncol 17:1187–1193

    PubMed  Google Scholar 

  31. Sanchez-Ortiz RF, Tannir N, Ahrar K et al (2003) Spontaneous regression of pulmonary metastases from renal cell carcinoma after radio frequency ablation of primary tumor: an in situ tumor vaccine? J Urol 170:178–179

    PubMed  Google Scholar 

  32. Schell SR, Wessels FJ, Abouhamze A et al (2002) Pro- and antiinflammatory cytokine production after radiofrequency ablation of unresectable hepatic tumors. J Am Coll Surg 195:774–781

    PubMed  Google Scholar 

  33. Schueller G, Kettenbach J, Sedivy R et al (2004) Expression of heat shock proteins in human hepatocellular carcinoma after radiofrequency ablation in an animal model. Oncol Rep 12:495–499

    CAS  PubMed  Google Scholar 

  34. Seifert JK, Morris DL (1999) World survey on the complications of hepatic and prostate cryotherapy. World J Surg 23:109–113 (discussion 113–104)

    CAS  PubMed  Google Scholar 

  35. Shi L, Chen L, Wu C et al (2016) PD‑1 blockade boosts radiofrequency ablation-elicited adaptive immune responses against tumor. Clin Cancer Res 22:1173–1184

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Takahashi Y, Matsutani N, Nakayama T et al (2017) Immunological effect of local ablation combined with immunotherapy on solid malignancies. Chin J Cancer 36:49

    PubMed  PubMed Central  Google Scholar 

  37. Takaki H, Cornelis F, Kako Y et al (2017) Thermal ablation and immunomodulation: from preclinical experiments to clinical trials. Diagn Interv Imaging 98:651–659

    CAS  PubMed  Google Scholar 

  38. Taylor A, Verhagen J, Blaser K et al (2006) Mechanisms of immune suppression by interleukin-10 and transforming growth factor-beta: the role of T regulatory cells. Immunology 117:433–442

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Velez E, Goldberg SN, Kumar G et al (2016) Hepatic thermal ablation: effect of device and heating parameters on local tissue reactions and distant tumor growth. Radiology 281:782–792

    PubMed  PubMed Central  Google Scholar 

  40. Waitz R, Solomon SB (2009) Can local radiofrequency ablation of tumors generate systemic immunity against metastatic disease? Radiology 251:1–2

    PubMed  Google Scholar 

  41. Waitz R, Solomon SB, Petre EN et al (2012) Potent induction of tumor immunity by combining tumor cryoablation with anti-CTLA‑4 therapy. Cancer Res 72:430–439

    CAS  PubMed  Google Scholar 

  42. Wells AD, Rai SK, Salvato MS et al (1998) Hsp72-mediated augmentation of MHC class I surface expression and endogenous antigen presentation. Int Immunol 10:609–617

    CAS  PubMed  Google Scholar 

  43. White SB, Zhang Z, Chen J et al (2018) Early immunologic response of irreversible electroporation versus cryoablation in a rodent model of pancreatic cancer. J Vasc Interv Radiol 29:1764–1769

    PubMed  Google Scholar 

  44. Zerbini A, Pilli M, Laccabue D et al (2010) Radiofrequency thermal ablation for hepatocellular carcinoma stimulates autologous NK-cell response. Gastroenterology 138:1931–1942

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf-Thorsten Hoffmann.

Ethics declarations

Interessenkonflikt

C.G. Radosa und R.-T. Hoffmann geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radosa, C.G., Hoffmann, RT. Thermoablation. Radiologe 60, 704–710 (2020). https://doi.org/10.1007/s00117-020-00719-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-020-00719-w

Schlüsselwörter

Keywords

Navigation