Advertisement

Der Radiologe

, Volume 59, Issue 10, pp 898–905 | Cite as

Sicherheit von Implantaten im Hochfeld- und Ultrahochfeld-MRT

  • O. KraffEmail author
  • H. H. Quick
Leitthema
  • 146 Downloads

Zusammenfassung

Hintergrund

Es ist davon auszugehen, dass der Anteil an 7‑T-MRT-Systemen für den klinischen Einsatz in Zukunft weiter ansteigen wird. Dies wird den Anwender mehr und mehr mit der Frage der Implantatsicherheit konfrontieren, da bislang erst sehr wenige medizinische Implantate für die 7‑T-MRT sicherheitstechnisch evaluiert wurden.

Methode

Wenn auch prinzipiell die gleichen Wechselwirkungsmechanismen mit magnetisierbarem und elektrisch leitfähigem Material bei 7 T wie auch bei niedrigerer magnetischer Feldstärke gelten, so gibt es doch einige Unterschiede, die gerade im Hinblick auf die Implantatsicherheit für eine fundierte Risiko-Nutzen-Analyse relevant sind. Nach einem generellen Überblick zu den technischen Unterschieden zwischen 3 und 7 T richtet sich der Fokus in den Sicherheitsbetrachtungen verstärkt auf die Wechselwirkung von Implantaten mit den HF-Sendefeldern sowie auf mögliche Lösungsansätze, um den Zugang zur 7‑T-MRT zu ermöglichen.

Praxisrelevante Ergebnisse

Neben der Kraftwirkung am 7‑T-MRT, die bis zu 2,3-mal stärker ausfallen kann als am 3‑T-MRT, stellen potenzielle Gewebeerwärmungen durch die höherfrequenten HF-Pulse eine großes Gefährdungspotenzial dar. Die kritische Länge der Implantate für Resonanzeffekte beträgt bei 7 T etwa 5 cm. Anders als bei 3 T sind 7‑T-MRT-Systeme längst nicht so standardisiert und können sich insbesondere in der Wahl der HF-Sendespule stark unterscheiden. Sicherheitstests an Implantaten sind daher stets kritisch zu hinterfragen und die Anwendbarkeit auf den jeweiligen Expositionsfall zu diskutieren. Für nichtmagnetisierbare Implantate ohne dedizierten Sicherheitstest bei 7 T, die aber als 3 T bedingt MR sicher gelten und einen gewissen Mindestabstand zur HF-Sendespule haben, gibt es eine Empfehlung des nationalen Netzwerks GUFI.

Schlüsselwörter

Magnetresonanztomographie Magnetfeldspulen Hochfrequenz Implantatlänge Risiko 

Safety of implants in high field and ultrahigh field MRI

Abstract

Background

It can be expected that the number of 7 T MRI systems for clinical use will increase in the future. On the other hand, almost no medical implant has been labeled MR conditional for 7 T, so far, leaving the question of implant safety unanswered to the MR operator.

Methods

In principle, the same interactions between magnetizable and electric conductive material apply at 7 T as known at lower magnetic field strengths. However, there are a few important differences that need to be taken into account to perform a profound risk–benefit analysis. After a more general introduction of technical differences between 3 and 7 T systems, the article will focus mainly on safety assessments with regard to interactions between implant and radiofrequency (RF) transmit fields. In addition, strategies to ensure access at 7 T will be discussed.

Results of practical relevance

Besides hazards due to the magnetic force which can be up to 2.3 times stronger at 7 T compared to 3 T, increased risks of RF-induced tissue heating are the most critical aspects. The resonant-length of an implant at 7 T is about 5 cm. Other than at 3 T, MR systems at 7 T are less standardized. Especially with regard to the RF transmit coil and transmission methods used, substantial differences need to be expected. Hence, it is important to critically question published safety assessments of implants and to have a thorough discussion about how this relates to the individual exposure scenario. For nonmagnetic implants without a dedicated 7 T safety evaluation, but which are 3 T MR conditional and have a certain minimum distance to the RF transmit coil, a consensus recommendation from the national network German Ultrahigh Field Imaging (GUFI) may be helpful.

Keywords

Magnetic resonance imaging Magnetic field coils Radiofrequency Implant lengths Risks 

Notes

Danksagung

Die Autoren danken Y. Noureddine für die Hilfe bei der Erstellung von Abbildungen.

Einhaltung ethischer Richtlinien

Interessenkonflikt

O. Kraff und H.H. Quick geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Literatur

  1. 1.
    Schick F (2019) MRI-Interactions with magnetically active and electrically conductive material. Radiologe.  https://doi.org/10.1007/s00117-019-0514-9 CrossRefPubMedGoogle Scholar
  2. 2.
    International Electrotechnical Commission (2015) Medical electrical equipment – Part 2‑33: Particular requirements for the safety of magnetic resonance diagnostic devices (in IEC 60601-2-33)Google Scholar
  3. 3.
    Dula AN, Virostko J, Shellock FG (2014) Assessment of MRI issues at 7 T for 28 implants and other objects. AJR Am J Roentgenol 202(2):401–405CrossRefGoogle Scholar
  4. 4.
    Boston Scientific (2017) ResolutionTM clip device, MRI safety and compatibility information. https://www.bostonscientific.com/content/dam/bostonscientific/endo/portfolio-group/resolution-clip/bsci-sheet-dfu-resolutionclip.pdf. Zugegriffen: 23. Apr. 2019Google Scholar
  5. 5.
    Brühl R, Ihlenfeld A, Ittermann B (2017) Gradient heating of bulk metallic implants can be a safety concern in MRI. Magn Reson Med 77(5):1739–1740CrossRefGoogle Scholar
  6. 6.
    Graf H, Lauer UA, Schick F (2006) Eddy-current induction in extended metallic parts as a source of considerable torsional moment. J Magn Reson Imaging 23(4):585–590CrossRefGoogle Scholar
  7. 7.
    Kraff O, Quick HH (2019) Radiofrequency coils for 7 T MRI. Top Magn Reson Imaging.  https://doi.org/10.1097/RMR.0000000000000206 CrossRefPubMedGoogle Scholar
  8. 8.
    Kraff O, Quick HH (2017) 7T: Physics, safety, and potential clinical applications. J Magn Reson Imaging 46(6):1573–1589CrossRefGoogle Scholar
  9. 9.
    Eryaman Y, Guerin B, Keil B et al (2015) SAR reduction in 7T C‑spine imaging using a “dark modes” transmit array strategy. Magn Reson Med 73(4):1533–1539CrossRefGoogle Scholar
  10. 10.
    Brunner DO, De Zanche N, Fröhlich J et al (2009) Travelling-wave nuclear magnetic resonance. Nature 457(7232):994–998CrossRefGoogle Scholar
  11. 11.
    Fiedler TM, Ladd ME, Bitz AK (2018) SAR simulations & safety. Neuroimage 168:33–58CrossRefGoogle Scholar
  12. 12.
    Kraff O, Wrede KH, Schoemberg T et al (2013) MR safety assessment of potential RF heating from cranial fixation plates at 7 T. Med Phys 40(4):42302CrossRefGoogle Scholar
  13. 13.
    Noureddine Y, Kraff O, Ladd ME et al (2016) In vitro and in silico assessment of RF-induced heating around intracranial aneurysm clips at 7 T. Magn Reson Med 79(1):568–581CrossRefGoogle Scholar
  14. 14.
    Glaukos Corporation (2017) Gebrauchsanleitung & MRI-Informationen. https://www.glaukos.com/de/gebrauchsanleitung-mri-informationen/. Zugegriffen: 23. Apr. 2019Google Scholar
  15. 15.
    Thelen A, Bauknecht HC, Asbach P et al (2006) Behavior of metal implants used in ENT surgery in 7 T magnetic resonance imaging. Eur Arch Otorhinolaryngol 263(10):900–905CrossRefGoogle Scholar
  16. 16.
    Kurz Medical Inc. (2016) MR Information. http://www.kurzmed.de/medien/pdf/MR_Information_en_Rev_06.pdf. Zugegriffen: 23. Apr. 2019Google Scholar
  17. 17.
    Grace Medical Inc. (2014) Magnetic resonance imaging (MRI) information for Grace medical otologic implants. http://www.gracemedical.com/sites/488/uploaded/files/Grace_Medical_MRI_Letter_November_2014.pdf. Zugegriffen: 23. Apr. 2019Google Scholar
  18. 18.
    Novatech SA (2019) Novatech TTS MRI safety information. https://www.novatech.fr/en/ent-products/novatechr-tts.html. Zugegriffen: 23. Apr. 2019Google Scholar
  19. 19.
    Yeung CJ, Karmarkar P, McVeigh ER (2007) Minimizing RF heating of conducting wires in MRI. Magn Reson Med 58(5):1028–1034CrossRefGoogle Scholar
  20. 20.
    Wezel J, Kooij BJ, Webb AG (2014) Assessing the MR compatibility of dental retainer wires at 7 T. Magn Reson Med 72(4):1191–1198CrossRefGoogle Scholar
  21. 21.
    Oriso K, Kobayashi T, Sasaki M et al (2016) Impact of the static and radiofrequency magnetic fields produced by a 7T MR imager on metallic dental materials. Magn Reson Med Sci 15(1):26–33CrossRefGoogle Scholar
  22. 22.
    Noureddine Y, Bitz AK, Ladd ME et al (2015) Experience with magnetic resonance imaging of human subjects with passive implants and tattoos at 7 T: A retrospective study. MAGMA 28(6):577–590CrossRefGoogle Scholar
  23. 23.
    Kraff O, Berghs RM, Noureddine Y et al (2018) Experience with 7 T MRI of human subjects with passive implants and tattoos: An update. Joint Annual Meeting ISMRM-ESMRMB, Paris, Frankreich, 16.–21. June 2018 (Electronic Poster 4059)Google Scholar
  24. 24.
    Wrede KH, Chen B, Sure U et al (2017) Safety and function of programmable ventriculo-peritoneal shunt valves: An in vitro 7 T magnetic resonance imaging study. 25th Annual Meeting and Exhibition ISMRM, Honolulu (5584)Google Scholar
  25. 25.
    Sammet CL, Yang X, Wassenaar PA et al (2013) RF-related heating assessment of extracranial neurosurgical implants at 7T. Magn Reson Imaging 31(6):1029–1034CrossRefGoogle Scholar
  26. 26.
    Rauschenberg J, Groebner J, Nagelk AM et al (2010) MR safety measurements of Intracranial fixation devices at 7T. Joint Annual Meeting ISMRM-ESMRMB, Stockholm (778)Google Scholar
  27. 27.
    Chen B, Schoemberg T, Kraff O et al (2016) Cranial fixation plates in cerebral magnetic resonance imaging: A 3 and 7 T in vivo image quality study. MAGMA 29(3):389–398CrossRefGoogle Scholar
  28. 28.
    Mizuho America Inc. (2018) Sugita titanium 2 aneurysm clips and appliers. http://www.mizuho.com/wp-content/uploads/2014/05/9-T2-Full-Brochure_6_20_2018.pdf. Zugegriffen: 23. Apr. 2019Google Scholar
  29. 29.
    Kraff O, Huening BM, Deistung A et al (2017) On the SAR load of typical head protocols at 7T. 25th Annual Meeting and Exhibition ISMRM, Honolulu (2648)Google Scholar
  30. 30.
    Kraff O, Noureddine Y, Frerk E et al (2017) RF safety of an implanted port catheter in direct vicinity of a 7T transmit head coil. 25th Annual Meeting and Exhibition, Honolulu (5452)Google Scholar
  31. 31.
    Oberacker E, Paul K, Huelnhagen T et al (2017) Magnetic resonance safety and compatibility of tantalum markers used in proton beam therapy for intraocular tumors: A 7.0 T study. Magn Reson Med 78(4):1533–1546CrossRefGoogle Scholar
  32. 32.
    Santoro D, Winter L, Müller A et al (2012) Detailing radio frequency heating induced by coronary stents: A 7.0 T magnetic resonance study. PLoS ONE 7(11):e49963CrossRefGoogle Scholar
  33. 33.
    Winter L, Oberacker E, Özerdem C et al (2015) On the RF heating of coronary stents at 7.0 T MRI. Magn Reson Med 74(4):999–1010CrossRefGoogle Scholar
  34. 34.
    American Society for Testing and Materials (ASTM) International (2011) ASTM F2182–11a: Standard test method for measurement of radio frequency induced heating on or near passive implants during magnetic resonance imagingGoogle Scholar
  35. 35.
    German Ultrahigh Field Imaging (GUFI) Network (2015) Approval of subjects for measurements at ultra-high-field MRI. https://mr-gufi.de/images/documents/GUFI_Empfehlung_Implantate_UHF.pdf. Zugegriffen: 23. Apr. 2019Google Scholar
  36. 36.
    Barisano G, Culo B, Shellock FG et al (2019) 7‑Tesla MRI of the brain in a research subject with bilateral, total knee replacement implants: Case report and proposed safety guidelines. Magn Reson Imaging 57:313–316CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Erwin L. Hahn Institute for MR ImagingUniversität Duisburg-EssenEssenDeutschland
  2. 2.Hochfeld- und Hybride MR-BildgebungUniversitätsklinikum EssenEssenDeutschland

Personalised recommendations