Skip to main content
Log in

Kontrastmittelfreie Magnetresonanzangiographie

Magnetic resonance angiography without contrast agents

  • Leitthema
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Der Einsatz von Magnetresonanztomographie(MRT-)Kontrastmitteln soll bei MR-Angiographien (MRA) minimiert werden.

Fragestellung

Übersicht über existierende native MRT-Techniken für die MR-Angiographie

Material und Methode

Native MRT-Angiographien nutzen aus, dass ungesättigtes fließendes Blut hyperintens zu statischem Gewebe ist („Time-of-flight“-MRA), dass Fluss eine darstellbare Phasenverschiebung induziert („Phase-contrast“-MRA), dass Blutmarkierung durch selektive Inversion eine Boluspassage dynamisch darstellt („arterial spin labeling“) und dass spezielle MRT-Sequenzen die Kontrasteigenschaften von Blut nutzen.

Schlussfolgerungen

Native MRT-Angiographien können bei geeigneter Wahl Gefäße wie Hirnarterien und Koronarien zuverlässig darstellen und zusätzliche Informationen über die Flussdynamik liefern.

Abstract

Background

The use of magnetic resonance imaging (MRI) contrast agents should be minimized in MR angiography.

Objective

Overview of existing native MRI techniques for MR angiography

Material and methods

Native MRI angiography uses the fact that unsaturated flowing blood is hyperintense to static tissue (time-of-flight MRA), that blood flow induces a detectable phase shift (phase contrast MRA), that labeling by selective inversion can dynamically image a bolus passage (arterial spin labeling) and that special MRI sequences exist which utilize the contrast properties of blood.

Conclusion

Native MRI angiography, if properly selected, can reliably delineate vessels such as cerebral arteries and coronary arteries and can provide additional information about the flow dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Backens M, Schmitz B (2005) Unenhanced MR angiography. In: Schneider G, Prince MR, Meaney JFM, Ho VB (Hrsg) Magnetic resonance angiography. Springer, Milan, S 3–22

    Chapter  Google Scholar 

  2. Frahm J, Haase A, Matthaei D (1986) Rapid three-dimensional MR imaging using the FLASH technique. J Comput Assist Tomogr 10:363–368

    Article  CAS  Google Scholar 

  3. Prince MR, Yucel EK, Kaufman JA, Harrison DC, Geller SC (1993) Dynamic gadolinium-enhanced three-dimensional abdominal MR arteriography. J Magn Reson Imaging 3:877–881

    Article  CAS  Google Scholar 

  4. Goyen M, Debatin JF (2004) Gadopentetate dimeglumine-enhanced three-dimensional MR-angiography: dosing, safety, and efficacy. J Magn Reson Imaging 19:261–273. https://doi.org/10.1002/jmri.20005

    Article  PubMed  Google Scholar 

  5. Kuo PH, Kanal E, Abu-Alfa AK, Cowper SE (2007) Gadolinium-based MR contrast agents and nephrogenic systemic fibrosis. Radiology 242:647–649. https://doi.org/10.1148/radiol.2423061640

    Article  PubMed  Google Scholar 

  6. Murata N, Murata K, Gonzalez-Cuyar LF, Maravilla KR (2016) Gadolinium tissue deposition in brain and bone. Magn Reson Imaging 34:1359–1365. https://doi.org/10.1016/j.mri.2016.08.025

    Article  CAS  PubMed  Google Scholar 

  7. McDonald RJ, McDonald JS, Kallmes DF, Jentoft ME, Murray DL, Thielen KR, Williamson EE, Eckel LJ (2015) Intracranial gadolinium deposition after contrast-enhanced MR imaging. Radiology 275:772–782. https://doi.org/10.1148/radiol.15150025

    Article  PubMed  Google Scholar 

  8. Kanda T, Ishii K, Kawaguchi H, Kitajima K, Takenaka D (2014) High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology 270:834–841. https://doi.org/10.1148/radiol.13131669

    Article  PubMed  Google Scholar 

  9. Lanzman RS, Schmitt P, Kröpil P, Blondin D (2011) Nonenhanced MR angiography techniques. Rofo 183:913–924. https://doi.org/10.1055/s-0029-1246111

    Article  CAS  PubMed  Google Scholar 

  10. Miyazaki M, Akahane M (2012) Non-contrast enhanced MR angiography: established techniques. J Magn Reson Imaging 35:1–19. https://doi.org/10.1002/jmri.22789

    Article  PubMed  Google Scholar 

  11. Laub GA (1995) Time-of-flight method of MR angiography. Magn Reson Imaging Clin N Am 3:391–398

    CAS  PubMed  Google Scholar 

  12. Bernstein MA, King KF, Zhou ZJ (2004) Time of flight. In: Handbook of MRI pulse sequences, 1. Aufl. Academic Press, Amsterdam Boston, S 680–689

    Google Scholar 

  13. Atkinson D, Brant-Zawadzki M, Gillan G, Purdy D, Laub G (1994) Improved MR angiography: magnetization transfer suppression with variable flip angle excitation and increased resolution. Radiology 190:890–894. https://doi.org/10.1148/radiology.190.3.8115646

    Article  CAS  PubMed  Google Scholar 

  14. Detre JA, Rao H, Wang DJJ, Chen YF, Wang Z (2012) Applications of arterial spin labeled MRI in the brain. J Magn Reson Imaging 35:1026–1037. https://doi.org/10.1002/jmri.23581

    Article  PubMed  PubMed Central  Google Scholar 

  15. Dixon WT, Du LN, Faul DD, Gado M, Rossnick S (1986) Projection angiograms of blood labeled by adiabatic fast passage. Magn Reson Med 3:454–462

    Article  CAS  Google Scholar 

  16. Edelman RR, Siewert B, Adamis M, Gaa J, Laub G, Wielopolski P (1994) Signal targeting with alternating radiofrequency (STAR) sequences: application to MR angiography. Magn Reson Med 31:233–238

    Article  CAS  Google Scholar 

  17. Raoult H, Bannier E, Robert B, Barillot C, Schmitt P, Gauvrit J‑Y (2014) Time-resolved Spin-labeled MR Angiography for the Depiction of Cerebral Arteriovenous Malformations: A Comparison of Techniques. Radiology 271:524–533. https://doi.org/10.1148/radiol.13131252

    Article  PubMed  Google Scholar 

  18. Essig M, Engenhart R, Knopp MV, Bock M, Scharf J, Debus J, Wenz F, Hawighorst H, Schad LR, Van Kaick G (1996) Cerebral arteriovenous malformations: Improved nidus demarcation by means of dynamic tagging MR-angiography. Magn Reson Imaging 14:227–233

    Article  CAS  Google Scholar 

  19. Wedeen VJ, Meuli RA, Edelman RR, Geller SC, Frank LR, Brady TJ, Rosen BR (1985) Projective imaging of pulsatile flow with magnetic resonance. Science 230:946–948

    Article  CAS  Google Scholar 

  20. Meuli RA, Wedeen VJ, Geller SC, Edelman RR, Frank LR, Brady TJ, Rosen BR (1986) MR gated subtraction angiography: evaluation of lower extremities. Radiology 159:411–418. https://doi.org/10.1148/radiology.159.2.3961174

    Article  CAS  PubMed  Google Scholar 

  21. Miyazaki M, Sugiura S, Tateishi F, Wada H, Kassai Y, Abe H (2000) Non-contrast-enhanced MR angiography using 3D ECG-synchronized half-Fourier fast spin echo. J Magn Reson Imaging 12:776–783

    Article  CAS  Google Scholar 

  22. Fan Z, Sheehan J, Bi X, Liu X, Carr J, Li D (2009) 3D noncontrast MR angiography of the distal lower extremities using flow-sensitive dephasing (FSD)-prepared balanced SSFP. Magn Reson Med 62:1523–1532. https://doi.org/10.1002/mrm.22142

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bock.

Ethics declarations

Interessenkonflikt

M. Bock arbeitet mit der Firma Siemens Healthcare GmbH zusammen im Rahmen einer Forschungskooperation.

Für diesen Beitrag wurden vom Autor keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bock, M. Kontrastmittelfreie Magnetresonanzangiographie. Radiologe 59, 523–532 (2019). https://doi.org/10.1007/s00117-019-0534-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-019-0534-5

Schlüsselwörter

Keywords

Navigation