Advertisement

Der Radiologe

, Volume 59, Issue 5, pp 435–443 | Cite as

Gadoliniumablagerungen – Morbus Gadolinium

  • P. Raczeck
  • P. Fries
  • A. Bücker
  • G. SchneiderEmail author
Leitthema
  • 281 Downloads

Zusammenfassung

Gadolinium(Gd)-haltige Kontrastmittel (KM) werden seit 1988 in der klinischen MRT-Routinediagnostik weltweit eingesetzt. Dabei wurden alle in der Routine verwendeten Kontrastmittel in der zugelassenen Dosierung hinsichtlich Verträglichkeit, Nebenwirkungsprofil und diagnostischer Wirksamkeit lange Zeit als sicher eingestuft. Mit der Beobachtung der nephrogenen systemischen Fibrose (NSF) und der Gd-Retention im Gehirn änderte sich diese Ansicht jedoch und führte in Europa zum Entzug bzw. zur Einschränkung der Zulassung linearer Gd-Chelate. Insbesondere die NSF sowie die akute Unverträglichkeitsreaktion sind bei der Betrachtung Gd-haltiger Kontrastmittel von primärer klinischer Relevanz. Die schon seit Langem in der Literatur beschriebenen Ablagerungen von gadoliniumhaltigen Strukturen bzw. Strukturkomplexen im Körper wurden in den letzten Jahren insbesondere durch Veröffentlichungen von Ablagerungen im Gehirn sowie auch im Knochenmark wieder in den Vordergrund gerückt, jedoch wurde bisher keine klinische Beschwerdesymptomatik und keine nachhaltige Konsequenz für die Gesundheit der Patienten hierdurch beobachtet. Als Morbus Gadolinium wird ein von überwiegend online aktiven Patienten(interessens)gruppen gebildeter, wissenschaftlich nicht sicher belegter Symptomkomplex beschrieben, der sich nach Anwendung von gadoliniumhaltigen Kontrastmitteln mit großem Beschwerdespektrum offenbart. Die Betroffenen sind von teils chronisch persistierenden, teils remittierenden, und nicht durch andere (Vor‑)Erkrankungen zu erklärenden Beschwerden geplagt.

Schlüsselwörter

Gadoliniumhaltige Kontrastmittel Nephrogene systemische Fibrose Akute Unverträglichkeitsreaktionen Neurologische Beschwerden Gadolinium-Chelate 

Gadolinium deposition—“gadolinium deposition disease”

Abstract

Gadolinium (Gd)-based contrast agents have been routinely used worldwide in diagnostic MRI since 1988. All routinely applied contrast agents for clinical use were considered extremely safe with regard to tolerance, adverse effects and diagnostic efficacy and when used at Food and Drug Administration-approved doses. With the identification of Gd-associated disorders, namely nephrogenic systemic fibrosis and adverse reactions, and in the longer term Gd-retention in the brain, this view changed and led to the withdrawal or restriction of approval of linear Gd chelates in Europe. Even though Gd deposition in different human body areas was described very early, recently published literature of intracerebral accumulation of contrast agents as well as deposition in bone have created surprising attention. Not only was the fact of Gd deposition in the body well known for many years, but there is currently no clinical evidence of patient symptoms and no resulting health issues of patients have been observed yet. The expression “gadolinium deposition disease” has been termed by active patient advocacy groups with an online presence with reports of individual members stating a broad spectrum of disorders yielding a large symptom complex after administration of Gd-based contrast agents without evidence of any pre-existing or otherwise underlying disease process which could explain the mentioned disorder.

Keywords

Gadolinium based contrast agents Nephrogenic systemic fibrosis Acute contrast adverse reactions Neurological symptoms Gadolinium chelates 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

P. Fries arbeitet wissenschaftlich an Forschungsprojekten mit der Firma Guerbet. A. Bücker ist wissenschaftlich für die Firmen Bracco und Guerbet tätig. G. Schneider arbeitet wissenschaftlich für die Firma Bracco und ist für Selbige Mitglied des Advisory Boards. Zusätzlich werden im Auftrag der Firma Bracco Vortragstätigkeiten wahrgenommen. P. Raczeck gibt an, dass es keinen Interessenskonflikt gibt.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Literatur

  1. 1.
    Hao D, Ai T, Goerner F, Hu X, Runge VM, Tweedle M (2012) MRI contrast agents: basic chemistry and safety. J Magn Reson Imaging 36(5):1060–1071PubMedGoogle Scholar
  2. 2.
    Bleicher AG, Kanal E (2008) Assessment of adverse reaction rates to a newly approved MRI contrast agent: review of 23,553 administrations of gadobenate dimeglumine. Ajr Am J Roentgenol 191(6):W307–W311PubMedGoogle Scholar
  3. 3.
    Bleicher AG, Kanal E (2008) A serial dilution study of gadolinium-based MR imaging contrast agents. Ajnr Am J Neuroradiol 29(4):668–673PubMedGoogle Scholar
  4. 4.
    Kanal E, Tweedle MF (2015) Residual or retained gadolinium: practical implications for radiologists and our patients. Radiology 275(3):630–634PubMedGoogle Scholar
  5. 5.
    Grobner T (2006) Gadolinium—a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol Dial Transplant 21(4):1104–1108PubMedPubMedCentralGoogle Scholar
  6. 6.
    Marckmann P, Skov L, Rossen K, Dupont A, Damholt MB, Heaf JG, Thomsen HS (2006) Nephrogenic systemic fibrosis: suspected causative role of gadodiamide used for contrast-enhanced magnetic resonance imaging. J Am Soc Nephrol 17(9):2359–2362PubMedGoogle Scholar
  7. 7.
    Hope TA, High WA, Leboit PE, Chaopathomkul B, Rogut VS, Herfkens RJ, Brasch RC (2009) Nephrogenic systemic fibrosis in rats treated with erythropoietin and intravenous iron. Radiology 253(2):390–398PubMedGoogle Scholar
  8. 8.
    Wertman R, Altun E, Martin DR, Mitchell DG, Leyendecker JR, O’Malley RB, Parsons DJ, Fuller ER III, Semelka RC (2008) Risk of nephrogenic systemic fibrosis: evaluation of gadolinium chelate contrast agents at four American universities. Radiology 248(3):799–806PubMedGoogle Scholar
  9. 9.
    Fretellier N, Idee JM, Guerret S, Hollenbeck C, Hartmann D, Gonzalez W, Robic C, Port M, Corot C (2011) Clinical, biological, and skin histopathologic effects of ionic macrocyclic and nonionic linear gadolinium chelates in a rat model of nephrogenic systemic fibrosis. Invest Radiol 46(2):85–93PubMedGoogle Scholar
  10. 10.
    Abujudeh HH, Kaewlai R, Kagan A, Chibnik LB, Nazarian RM, High WA, Kay J (2009) Nephrogenic systemic fibrosis after gadopentetate dimeglumine exposure: case series of 36 patients. Radiology 253(1):81–89PubMedGoogle Scholar
  11. 11.
    Altun E, Martin DR, Wertman R, Lugo-Somolinos A, Fuller ER III, Semelka RC (2009) Nephrogenic systemic fibrosis: change in incidence following a switch in gadolinium agents and adoption of a gadolinium policy—report from two U.S. universities. Radiology 253(3):689–696PubMedGoogle Scholar
  12. 12.
    Kanda T, Ishii K, Kawaguchi H, Kitajima K, Takenaka D (2014) High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology 270(3):834–841PubMedPubMedCentralGoogle Scholar
  13. 13.
    Murata N, Gonzalez-Cuyar LF, Murata K, Fligner C, Dills R, Hippe D, Maravilla KR (2016) Macrocyclic and other non-group 1 gadolinium contrast agents deposit low levels of gadolinium in brain and Bone tissue: preliminary results from 9 patients with normal renal function. Invest Radiol 51(7):447–453PubMedGoogle Scholar
  14. 14.
    Kanda T, Fukusato T, Matsuda M, Toyoda K, Oba H, Kotoku J, Haruyama T, Kitajima K, Furui S (2015) Gadolinium-based contrast agent accumulates in the brain even in subjects without severe renal dysfunction: evaluation of autopsy brain specimens with inductively coupled plasma mass spectroscopy. Radiology 276(1):228–232PubMedGoogle Scholar
  15. 15.
    McDonald RJ, McDonald JS, Kallmes DF, Jentoft ME, Murray DL, Thielen KR, Williamson EE, Eckel LJ (2015) Intracranial gadolinium deposition after contrast-enhanced MR imaging. Radiology 275(3):772–782PubMedGoogle Scholar
  16. 16.
    Joffe P, Thomsen HS, Meusel M (1998) Pharmacokinetics of gadodiamide injection in patients with severe renal insufficiency and patients undergoing hemodialysis or continuous ambulatory peritoneal dialysis. Acad Radiol 5(7):491–502PubMedGoogle Scholar
  17. 17.
    Gibby WA, Gibby KA, Gibby WA (2004) Comparison of Gd DTPA-BMA (Omniscan) versus Gd HP-DO3A (ProHance) retention in human bone tissue by inductively coupled plasma atomic emission spectroscopy. Invest Radiol 39(3):138–142PubMedGoogle Scholar
  18. 18.
    Darrah TH, Prutsman-Pfeiffer JJ, Poreda RJ, Ellen CM, Hauschka PV, Hannigan RE (2009) Incorporation of excess gadolinium into human bone from medical contrast agents. Metallomics 1(6):479–488PubMedGoogle Scholar
  19. 19.
    Runge VM (2000) Safety of approved MR contrast media for intravenous injection. J Magn Reson Imaging 12(2):205–213PubMedGoogle Scholar
  20. 20.
    Weiss KL (1990) Severe anaphylactoid reaction after i.v. Gd-DTPA. Magn Reson Imaging 8(6):817–818PubMedGoogle Scholar
  21. 21.
    Beaudouin E, Kanny G, Blanloeil Y, Guilloux L, Renaudin JM, Moneret-Vautrin DA (2003) Anaphylactic shock induced by gadoterate meglumine (DOTAREM). Eur Ann Allergy Clin Immunol 35(10):382–385PubMedGoogle Scholar
  22. 22.
    Runge VM (2001) Safety of magnetic resonance contrast media. Top Magn Reson Imaging 12(4):309–314PubMedGoogle Scholar
  23. 23.
    Ansell G, Tweedie MC, West CR, Evans P, Couch L (1980) The current status of reactions to intravenous contrast media. Invest Radiol 15(6 Suppl):32–39Google Scholar
  24. 24.
    Jung JW, Kang HR, Kim MH, Lee W, Min KU, Han MH, Cho SH (2012) Immediate hypersensitivity reaction to gadolinium-based MR contrast media. Radiology 264(2):414–422PubMedPubMedCentralGoogle Scholar
  25. 25.
    Kanal E, Maravilla K, Rowley HA (2014) Gadolinium contrast agents for CNS imaging: current concepts and clinical evidence. Ajnr Am J Neuroradiol 35(12):2215–2226PubMedGoogle Scholar
  26. 26.
    Semelka RC, Ramalho M, AlObaidy M, Ramalho J (2016) Gadolinium in humans: a family of disorders. Ajr Am J Roentgenol 207(2):229–233PubMedGoogle Scholar
  27. 27.
    ESUR Contrast Media Safety Committee (2018) ESUR Contrast Media guidelines version 10.0Google Scholar
  28. 28.
    American College of Radiology (ACR), Committee on Drugs and Contrast Media (2017) ACR manual on contrast media. American College of Radiology, (version 10.3)Google Scholar
  29. 29.
    Cowper SE, Robin HS, Steinberg SM, Su LD, Gupta S, Leboit PE (2000) Scleromyxoedema-like cutaneous diseases in renal-dialysis patients. Lancet 356(9234):1000–1001Google Scholar
  30. 30.
    Broome DR (2008) Nephrogenic systemic fibrosis associated with gadolinium based contrast agents: a summary of the medical literature reporting. Eur J Radiol 66(2):230–234PubMedPubMedCentralGoogle Scholar
  31. 31.
    Broome DR, Girguis MS, Baron PW, Cottrell AC, Kjellin I, Kirk GA (2007) Gadodiamide-associated nephrogenic systemic fibrosis: why radiologists should be concerned. Ajr Am J Roentgenol 188(2):586–592PubMedGoogle Scholar
  32. 32.
    Sadowski EA, Bennett LK, Chan MR, Wentland AL, Garrett AL, Garrett RW, Djamali A (2007) Nephrogenic systemic fibrosis: risk factors and incidence estimation. Radiology 243(1):148–157PubMedGoogle Scholar
  33. 33.
    Shabana WM, Cohan RH, Ellis JH, Hussain HK, Francis IR, Su LD, Mukherji SK, Swartz RD (2008) Nephrogenic systemic fibrosis: a report of 29 cases. Ajr Am J Roentgenol 190(3):736–741PubMedGoogle Scholar
  34. 34.
    Kallen AJ, Jhung MA, Cheng S, Hess T, Turabelidze G, Abramova L, Arduino M, Guarner J, Pollack B, Saab G, Patel PR (2008) Gadolinium-containing magnetic resonance imaging contrast and nephrogenic systemic fibrosis: a case-control study. Am J Kidney Dis 51(6):966–975PubMedGoogle Scholar
  35. 35.
    Nandwana SB, Moreno CC, Osipow MT, Sekhar A, Cox KL (2015) Gadobenate Dimeglumine administration and Nephrogenic systemic fibrosis: is there a real risk in patients with impaired renal function? Radiology 276(3):741–747PubMedGoogle Scholar
  36. 36.
    Abraham JL, Thakral C, Skov L, Rossen K, Marckmann P (2008) Dermal inorganic gadolinium concentrations: evidence for in vivo transmetallation and long-term persistence in nephrogenic systemic fibrosis. Br J Dermatol 158(2):273–280PubMedPubMedCentralGoogle Scholar
  37. 37.
    Collidge TA, Thomson PC, Mark PB, Traynor JP, Jardine AG, Morris ST, Simpson K, Roditi GH (2007) Gadolinium-enhanced MR imaging and nephrogenic systemic fibrosis: retrospective study of a renal replacement therapy cohort. Radiology 245(1):168–175PubMedGoogle Scholar
  38. 38.
    Rosenkranz AR, Grobner T, Mayer GJ (2007) Conventional or Gadolinium containing contrast media: the choice between acute renal failure or Nephrogenic Systemic Fibrosis? Wien Klin Wochenschr 119(9–10):271–275PubMedGoogle Scholar
  39. 39.
    Sanyal S, Marckmann P, Scherer S, Abraham JL (2011) Multiorgan gadolinium (Gd) deposition and fibrosis in a patient with nephrogenic systemic fibrosis—an autopsy-based review. Nephrol Dial Transplant 26(11):3616–3626PubMedGoogle Scholar
  40. 40.
    Christensen KN, Lee CU, Hanley MM, Leung N, Moyer TP, Pittelkow MR (2011) Quantification of gadolinium in fresh skin and serum samples from patients with nephrogenic systemic fibrosis. J Am Acad Dermatol 64(1):91–96PubMedGoogle Scholar
  41. 41.
    Rocklage SM, Worah D, Kim SH (1991) Metal ion release from paramagnetic chelates: what is tolerable? Magn Reson Med 22(2):216–221PubMedGoogle Scholar
  42. 42.
    Tweedle MF (1992) Physicochemical properties of gadoteridol and other magnetic resonance contrast agents. Invest Radiol 27(Suppl 1):2–6Google Scholar
  43. 43.
    Xia D, Davis RL, Crawford JA, Abraham JL (2010) Gadolinium released from MR contrast agents is deposited in brain tumors: in situ demonstration using scanning electron microscopy with energy dispersive X‑ray spectroscopy. Acta Radiol 51(10):1126–1136PubMedGoogle Scholar
  44. 44.
    Errante Y, Cirimele V, Mallio CA, Di L. V, Zobel BB, Quattrocchi CC (2014) Progressive increase of T1 signal intensity of the dentate nucleus on unenhanced magnetic resonance images is associated with cumulative doses of intravenously administered gadodiamide in patients with normal renal function, suggesting dechelation. Invest Radiol 49(10):685–690PubMedGoogle Scholar
  45. 45.
    Quattrocchi CC, Mallio CA, Errante Y, Beomonte ZB (2015) High T1 signal intensity in dentate nucleus after multiple injections of linear gadolinium chelates. Radiology 276(2):616–617PubMedGoogle Scholar
  46. 46.
    Quattrocchi CC, Mallio CA, Errante Y, Cirimele V, Carideo L, Ax A, Zobel BB (2015) Gadodiamide and dentate nucleus T1 Hyperintensity in patients with Meningioma evaluated by multiple follow-up contrast-enhanced magnetic resonance examinations with no systemic interval therapy. Invest Radiol 50(7):470–472PubMedGoogle Scholar
  47. 47.
    Cao Y, Huang DQ, Shih G, Prince MR (2016) Signal change in the dentate nucleus on T1-weighted MR images after multiple administrations of Gadopentetate Dimeglumine versus Gadobutrol. Ajr Am J Roentgenol 206(2):414–419PubMedGoogle Scholar
  48. 48.
    Kanda T, Osawa M, Oba H, Toyoda K, Kotoku J, Haruyama T, Takeshita K, Furui S (2015) High signal intensity in dentate nucleus on Unenhanced T1-weighted MR images: association with linear versus Macrocyclic gadolinium chelate administration. Radiology 275(3):803–809PubMedGoogle Scholar
  49. 49.
    Weberling LD, Kieslich PJ, Kickingereder P, Wick W, Bendszus M, Schlemmer HP, Radbruch A (2015) Increased signal intensity in the dentate nucleus on Unenhanced T1-weighted images after Gadobenate Dimeglumine administration. Invest Radiol 50(11):743–748PubMedGoogle Scholar
  50. 50.
    Radbruch A, Weberling LD, Kieslich PJ, Hepp J, Kickingereder P, Wick W, Schlemmer HP, Bendszus M (2015) High-signal intensity in the dentate nucleus and Globus Pallidus on Unenhanced T1-weighted images: evaluation of the Macrocyclic gadolinium-based contrast agent Gadobutrol. Invest Radiol 50(12):805–810PubMedGoogle Scholar
  51. 51.
    Radbruch A, Weberling LD, Kieslich PJ, Hepp J, Kickingereder P, Wick W, Schlemmer HP, Bendszus M (2016) Intraindividual analysis of signal intensity changes in the dentate nucleus after consecutive serial applications of linear and Macrocyclic gadolinium-based contrast agents. Invest Radiol 51(11):683–690PubMedGoogle Scholar
  52. 52.
    Stojanov DA, Aracki-Trenkic A, Vojinovic S, Benedeto-Stojanov D, Ljubisavljevic S (2016) Increasing signal intensity within the dentate nucleus and globus pallidus on unenhanced T1W magnetic resonance images in patients with relapsing-remitting multiple sclerosis: correlation with cumulative dose of a macrocyclic gadolinium-based contrast agent, gadobutrol. Eur Radiol 26(3):807–815PubMedGoogle Scholar
  53. 53.
    Schneider GK, Stroeder J, Roditi G, Colosimo C, Armstrong P, Martucci M, Buecker A, Raczeck P (2017) T1 signal measurements in pediatric brain: findings after multiple exposures to Gadobenate Dimeglumine for imaging of Nonneurologic disease. Ajnr Am J Neuroradiol 38(9):1799–1806PubMedGoogle Scholar
  54. 54.
    Bjornerud A, Vatnehol SAS, Larsson C, Due-Tonnessen P, Hol PK, Groote IR (2017) Signal enhancement of the dentate nucleus at Unenhanced MR imaging after very high cumulative doses of the Macrocyclic gadolinium-based contrast agent Gadobutrol: an observational study. Radiology 285(2):434–444PubMedGoogle Scholar
  55. 55.
    Ramalho J, Castillo M, AlObaidy M, Nunes RH, Ramalho M, Dale BM, Semelka RC (2015) High signal intensity in Globus Pallidus and dentate nucleus on Unenhanced T1-weighted MR images: evaluation of two linear gadolinium-based contrast agents. Radiology 276(3):836–844PubMedGoogle Scholar
  56. 56.
    Dekkers IA, Roos R, van der Molen AJ (2018) Gadolinium retention after administration of contrast agents based on linear chelators and the recommendations of the European Medicines Agency. Eur Radiol 28(4):1579–1584PubMedGoogle Scholar
  57. 57.
    Prosch H, Grois N, Wnorowski M, Steiner M, Prayer D (2007) Long-term MR imaging course of neurodegenerative Langerhans cell histiocytosis. Ajnr Am J Neuroradiol 28(6):1022–1028PubMedGoogle Scholar
  58. 58.
    Maeda H, Sato M, Yoshikawa A, Kimura M, Sonomura T, Terada M, Kishi K (1997) Brain MR imaging in patients with hepatic cirrhosis: relationship between high intensity signal in basal ganglia on T1-weighted images and elemental concentrations in brain. Neuroradiology 39(8):546–550PubMedGoogle Scholar
  59. 59.
    Mochizuki H, Kamakura K, Masaki T, Okano M, Nagata N, Inui A, Fujisawa T, Kaji T (1997) Atypical MRI features of Wilson’s disease: high signal in globus pallidus on T1-weighted images. Neuroradiology 39(3):171–174PubMedGoogle Scholar
  60. 60.
    Frenzel T, Apte C, Jost G, Schockel L, Lohrke J, Pietsch H (2017) Quantification and assessment of the chemical form of residual gadolinium in the brain after repeated administration of gadolinium-based contrast agents: comparative study in rats. Invest Radiol 52(7):396–404PubMedPubMedCentralGoogle Scholar
  61. 61.
    Murata N, Murata K, Gonzalez-Cuyar LF, Maravilla KR (2016) Gadolinium tissue deposition in brain and bone. Magn Reson Imaging 34(10):1359–1365PubMedGoogle Scholar
  62. 62.
    Maximova N, Gregori M, Zennaro F, Sonzogni A, Simeone R, Zanon D (2016) Hepatic gadolinium deposition and reversibility after contrast agent-enhanced MR imaging of pediatric Hematopoietic stem cell transplant recipients. Radiology 281(2):418–426PubMedGoogle Scholar
  63. 63.
    European Medicine Agency (2018) EMA’s final opinion confirms restrictions on use of linear gadolinium agents in body scans. https://www.ema.europa.eu (Erstellt: 23. Nov. 2017). Zugegriffen: 6. Dez. 2018 (EMA/625317/2017)Google Scholar
  64. 64.
    Taoka T, Naganawa S (2018) Gadolinium-based contrast media, cerebrospinal fluid and the Glymphatic system: possible mechanisms for the deposition of gadolinium in the brain. Magn Reson Med Sci 17(2):111–119PubMedPubMedCentralGoogle Scholar
  65. 65.
    Welk B, McArthur E, Morrow SA, MacDonald P, Hayward J, Leung A, Lum A (2016) Association between gadolinium contrast exposure and the risk of parkinsonism. JAMA 316(1):96–98PubMedGoogle Scholar
  66. 66.
    Cocozza S, Pontillo G, Lanzillo R, Russo C, Petracca M, Di SM, Paolella C, Vola EA, Criscuolo C, Moccia M, Lamberti A, Monti S, Brescia MV, Elefante A, Palma G, Tedeschi E, Brunetti A (2019) MRI features suggestive of gadolinium retention do not correlate with expanded disability status scale worsening in multiple sclerosis. Neuroradiology 61(2):155–162PubMedGoogle Scholar
  67. 67.
    McDonald RJ, McDonald JS, Kallmes DF, Jentoft ME, Paolini MA, Murray DL, Williamson EE, Eckel LJ (2017) Gadolinium deposition in human brain tissues after contrast-enhanced MR imaging in adult patients without Intracranial abnormalities. Radiology 285(2):546–554PubMedPubMedCentralGoogle Scholar
  68. 68.
    McDonald RJ, McDonald JS, Dai D, Schroeder D, Jentoft ME, Murray DL, Kadirvel R, Eckel LJ, Kallmes DF (2017) Comparison of gadolinium concentrations within multiple rat organs after intravenous administration of linear versus Macrocyclic gadolinium chelates. Radiology 285(2):536–545PubMedGoogle Scholar
  69. 69.
    Forslin Y, Shams S, Hashim F, Aspelin P, Bergendal G, Martola J, Fredrikson S, Kristoffersen-Wiberg M, Granberg T (2017) Retention of gadolinium-based contrast agents in multiple sclerosis: retrospective analysis of an 18-year longitudinal study. Ajnr Am J Neuroradiol 38(7):1311–1316PubMedGoogle Scholar
  70. 70.
    Semelka RC, Ramalho J, Vakharia A, AlObaidy M, Burke LM, Jay M, Ramalho M (2016) Gadolinium deposition disease: Initial description of a disease that has been around for a while. Magn Reson Imaging 34(10):1383–1390PubMedGoogle Scholar
  71. 71.
    Gadolinium Toxicity (2018) The lighthouse project. www.gadoliniumtoxicity.com. Zugegriffen: 4. Dez. 2018Google Scholar
  72. 72.
    Gadolinium-Vergiftung.de (2018) Informationen und Netzwerk für Betroffene. https://www.gadolinium-vergiftung.de/gadolinium-vergiftung-mrt-kontrastmittel-symptome/. Zugegriffen: 4. Dez. 2018Google Scholar
  73. 73.
    Gathings RM, Reddy R, Santa CD, Brodell RT (2015) Gadolinium-associated plaques: a new, distinctive clinical entity. Jama Dermatol 151(3):316–319PubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • P. Raczeck
    • 1
  • P. Fries
    • 1
  • A. Bücker
    • 1
  • G. Schneider
    • 1
    Email author
  1. 1.Klinik für Diagnostische und Interventionelle RadiologieUniversitätsklinikum des SaarlandesHomburg/SaarDeutschland

Personalised recommendations