Advertisement

Update Knorpelbildgebung der kleinen Gelenke

Fokus Hochfeld-MRT
  • R. HeissEmail author
  • R. Janka
  • M. Uder
  • A. M. Nagel
  • S. Trattnig
  • F. W. Roemer
Leitthema
  • 70 Downloads

Zusammenfassung

Hintergrund

Die Knorpeldiagnostik der kleinen Gelenke gewinnt zunehmend an klinischer Beachtung, da eine frühzeitige Erkennung von Knorpelschäden wichtig für die optimale Therapieplanung ist.

Ziel

Ziel dieser Übersichtsarbeit ist ein Update bezüglich moderner Knorpelbildung von kleinen Gelenken mit Betonung der MRT und Diskussion von Spezialuntersuchungen mittels CT-Arthrographie, der kompositionellen und der Hochfeld-MR-Bildgebung.

Material und Methoden

Es erfolgte eine PubMed-Literaturrecherche für den Zeitraum 2008–2018.

Ergebnisse

Die Darstellung chondraler Defekte an kleinen Gelenken stellt weiterhin eine Herausforderung dar. Die konventionelle MRT bei 3 T kann in der klinischen Routine weiterhin als Referenz in der Knorpelbildgebung angesehen werden. Hinsichtlich der Sensitivität ist die MR-Arthrographie (MR-A) und computertomographische Arthrographie (CT-A) der nativen MRT bei 1,5 T in der Detektion chondraler Defekte überlegen. Fortgeschrittene degenerative Veränderungen der Finger und Zehen werden meist ausreichend mittels konventioneller Röntgendiagnostik detektiert. MRT bei 3 T oder bei 7 T können neben der rein morphologischen Information auch quantifizierbare, funktionelle und metabolische Informationen liefern.

Schlussfolgerung

Eine standardisierte Knorpelbildgebung spielt am oberen Sprunggelenk aufgrund der Verfügbarkeit unterschiedlicher therapeutischer Konzepte eine wichtige Rolle in der klinischen Diagnostik. Im Gegensatz dazu erfolgt die schnittbildbasierte Knorpelbildgebung der übrigen kleinen Gelenke aktuell meist im Rahmen klinischer Studien und ist im klinischen Alltag bisher kaum etabliert. Hinsichtlich der Anwendung neuer Verfahren sind weiterführende Studien mit größeren Patientenkollektiven notwendig. Der radiologischen Diagnostik wird im Zusammenhang mit zunehmender Etablierung neuer Therapiekonzepte eine noch bedeutsamere Rolle in der Diagnostik von Knorpelläsionen kleiner Gelenke zukommen.

Schlüsselwörter

Sprunggelenk Handgelenk Glykosaminoglykane Magnetresonanztomographie Literaturrecherche 

Update cartilage imaging of the small joints

Focus on high-field MRI

Abstract

Background

Cartilage imaging of small joints is increasingly of interest, as early detection of cartilage damage may be relevant regarding individualized surgical therapies and long-term outcomes.

Purpose

The aim of this review is to explain modern cartilage imaging of small joints with emphasis on MRI and to discuss the role of methods such as CT arthrography as well as compositional and high-field MRI.

Materials and methods

A PubMed literature search was performed for the years 2008–2018.

Results

Clinically relevant cartilage imaging to detect chondral damage in small joints remains challenging. Conventional MRI at 3 T can still be considered as a reference for cartilage imaging in clinical routine. In terms of sensitivity, MR arthrography (MR-A) and computed tomography arthrography (CT-A) are superior to non-arthrographic MRI at 1.5 T in the detection of chondral damage. Advanced degenerative changes of the fingers and toes are usually sufficiently characterized by conventional radiography. MRI at field strengths of 3 T and ultrahigh-field imaging at 7 T can provide additional quantifiable, functional and metabolic information.

Conclusion

Standardized cartilage imaging plays an important role in clinical diagnostics in the ankle joint due to the availability of different and individualized therapeutic concepts. In contrast, cartilage imaging of other small joints as commonly performed in clinical studies has not yet become standard of care in daily clinical routine. Although individual study results are promising, additional studies with large patient collectives are needed to validate these techniques. With rapid development of new treatment concepts radiological diagnostics will play a more significant role in the diagnosis of cartilage lesions of small joints.

Keywords

Ankle Wrist Glycosaminoglycans Magnetic resonance imaging Literature review 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

R. Heiss, R. Janka, M. Uder, A.M. Nagel, S. Trattnig und F.W. Roemer geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Literatur

  1. 1.
    Huch K, Kuettner KE, Dieppe P (1997) Osteoarthritis in ankle and knee joints. Semin Arthritis Rheum 26(4):667–674PubMedCrossRefGoogle Scholar
  2. 2.
    Johnson VL, Giuffre BM, Hunter DJ (2012) Osteoarthritis: what does imaging tell us about its etiology? Semin Musculoskelet Radiol 16(5):410–418PubMedCrossRefGoogle Scholar
  3. 3.
    Egloff C, Hugle T, Valderrabano V (2012) Biomechanics and pathomechanisms of osteoarthritis. Swiss Med Wkly 142:w13583PubMedGoogle Scholar
  4. 4.
    Stufkens SA et al (2010) Cartilage lesions and the development of osteoarthritis after internal fixation of ankle fractures: a prospective study. J Bone Joint Surg Am 92(2):279–286PubMedCrossRefGoogle Scholar
  5. 5.
    O’Loughlin PF, Heyworth BE, Kennedy JG (2010) Current concepts in the diagnosis and treatment of osteochondral lesions of the ankle. Am J Sports Med 38(2):392–404PubMedCrossRefGoogle Scholar
  6. 6.
    Grambart ST (2016) Arthroscopic management of osteochondral lesions of the talus. Clin Podiatr Med Surg 33(4):521–530PubMedCrossRefGoogle Scholar
  7. 7.
    Gersing AS et al (2018) Advanced cartilage imaging for detection of cartilage injuries and osteochondral lesions. Radiologe 58(5):422–432PubMedCrossRefGoogle Scholar
  8. 8.
    Millington SA et al (2007) Quantitative and topographical evaluation of ankle articular cartilage using high resolution MRI. J Orthop Res 25(2):143–151PubMedCrossRefGoogle Scholar
  9. 9.
    Kirschke JS et al (2016) Diagnostic value of CT arthrography for evaluation of osteochondral lesions at the ankle. Biomed Res Int 2016:3594253PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Jungmann PM et al (2015) 3.0T MR imaging of the ankle: Axial traction for morphological cartilage evaluation, quantitative T2 mapping and cartilage diffusion imaging—A preliminary study. Eur J Radiol 84(8):1546–1554PubMedCrossRefGoogle Scholar
  11. 11.
    Zbyn S et al (2015) Sodium magnetic resonance imaging of ankle joint in cadaver specimens, volunteers, and patients after different cartilage repair techniques at 7 T: initial results. Invest Radiol 50(4):246–254PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Singh A et al (2012) Chemical exchange saturation transfer magnetic resonance imaging of human knee cartilage at 3 T and 7 T. Magn Reson Med 68(2):588–594PubMedCrossRefGoogle Scholar
  13. 13.
    Weber MA et al (2017) Modern cartilage imaging of the ankle. Rofo 189(10):945–956PubMedCrossRefGoogle Scholar
  14. 14.
    Rehnitz C, Weber MA (2015) Morphological and functional cartilage imaging. Orthopade 44(4):317–333 (quiz 334–5)PubMedCrossRefGoogle Scholar
  15. 15.
    Rizzo C et al (2013) Ultrasound in rheumatoid arthritis. Med Ultrason 15(3):199–208PubMedCrossRefGoogle Scholar
  16. 16.
    Amin S et al (2005) The relationship between cartilage loss on magnetic resonance imaging and radiographic progression in men and women with knee osteoarthritis. Arthritis Rheum 52(10):3152–3159PubMedCrossRefGoogle Scholar
  17. 17.
    Barr C et al (2007) MR imaging of the ankle at 3 Tesla and 1.5 Tesla: protocol optimization and application to cartilage, ligament and tendon pathology in cadaver specimens. Eur Radiol 17(6):1518–1528PubMedCrossRefGoogle Scholar
  18. 18.
    Forney M et al (2011) MR imaging of the articular cartilage of the knee and ankle. Magn Reson Imaging Clin N Am 19(2):379–405PubMedCrossRefGoogle Scholar
  19. 19.
    Dietrich TJ et al (2015) First metatarsophalangeal joint—MRI findings in asymptomatic volunteers. Eur Radiol 25(4):970–979PubMedCrossRefGoogle Scholar
  20. 20.
    Woertler K, Rummeny EJ, Settles M (2005) A fast high-resolution multislice T1-weighted turbo spin-echo (TSE) sequence with a DRIVen equilibrium (DRIVE) pulse for native arthrographic contrast. AJR Am J Roentgenol 185(6):1468–1470PubMedCrossRefGoogle Scholar
  21. 21.
    Duc SR et al (2007) Articular cartilage defects detected with 3D water-excitation true FISP: prospective comparison with sequences commonly used for knee imaging. Radiology 245(1):216–223PubMedCrossRefGoogle Scholar
  22. 22.
    Notohamiprodjo M et al (2012) 3D-MRI of the ankle with optimized 3D-SPACE. Invest Radiol 47(4):231–239PubMedCrossRefGoogle Scholar
  23. 23.
    Yi J et al (2016) MRI of the anterior talofibular ligament, talar cartilage and os subfibulare: Comparison of isotropic resolution 3D and conventional 2D T2-weighted fast spin-echo sequences at 3.0 T. Skelet Radiol 45(7):899–908CrossRefGoogle Scholar
  24. 24.
  25. 25.
  26. 26.
    Weber MA et al (2012) Cartilage imaging of the hand and wrist using 3‑T MRI. Semin Musculoskelet Radiol 16(2):71–87PubMedCrossRefGoogle Scholar
  27. 27.
    Schmid MR et al (2003) Cartilage lesions in the ankle joint: comparison of MR arthrography and CT arthrography. Skelet Radiol 32(5):259–265CrossRefGoogle Scholar
  28. 28.
    Theumann NH et al (2002) Metatarsophalangeal joint of the great toe: normal MR, MR arthrographic, and MR bursographic findings in cadavers. J Comput Assist Tomogr 26(5):829–838PubMedCrossRefGoogle Scholar
  29. 29.
    Aurich M et al (2017) Treatment of Osteochondral lesions in the ankle: a guideline from the group “clinical tissue regeneration” of the German Society of Orthopaedics and Traumatology (DGOU). Z Orthop Unfall 155(1):92–99PubMedGoogle Scholar
  30. 30.
    Lee RK et al (2017) Effect of traction on wrist joint space and cartilage visibility with and without MR arthrography. Br J Radiol 90(1072):20160932PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Lepage-Saucier M et al (2013) MRI of the metatarsophalangeal joints: improved assessment with toe traction and MR arthrography. AJR Am J Roentgenol 200(4):868–871PubMedCrossRefGoogle Scholar
  32. 32.
    Lee RK et al (2016) Wrist traction during MR arthrography improves detection of triangular fibrocartilage complex and intrinsic ligament tears and visibility of articular cartilage. AJR Am J Roentgenol 206(1):155–161PubMedCrossRefGoogle Scholar
  33. 33.
    Shepherd SM et al (2013) Cartilage assessment of the metacarpophalangeal joints: cadaveric study with magnetic resonance arthrography and finger traction. Clin Imaging 37(4):718–722PubMedCrossRefGoogle Scholar
  34. 34.
    Burstein D et al (2009) Measures of molecular composition and structure in osteoarthritis. Radiol Clin North Am 47(4):675–686PubMedCrossRefGoogle Scholar
  35. 35.
    Jungmann PM et al (2014) Cartilage repair surgery: outcome evaluation by using noninvasive cartilage biomarkers based on quantitative MRI techniques? Biomed Res Int 2014:840170PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Mosher TJ, Dardzinski BJ, Smith MB (2000) Human articular cartilage: influence of aging and early symptomatic degeneration on the spatial variation of T2—preliminary findings at 3 T. Radiology 214(1):259–266PubMedCrossRefGoogle Scholar
  37. 37.
    Liebl H et al (2015) Early T2 changes predict onset of radiographic knee osteoarthritis: data from the osteoarthritis initiative. Ann Rheum Dis 74(7):1353–1359PubMedCrossRefGoogle Scholar
  38. 38.
    Jungmann PM et al (2013) T(2) relaxation time measurements are limited in monitoring progression, once advanced cartilage defects at the knee occur: longitudinal data from the osteoarthritis initiative. J Magn Reson Imaging 38(6):1415–1424PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Van Ginckel A et al (2016) T2* mapping of subtalar cartilage: Precision and association between anatomical variants and cartilage composition. J Orthop Res 34(11):1969–1976PubMedCrossRefGoogle Scholar
  40. 40.
    Bae WC et al (2016) MR morphology of triangular fibrocartilage complex: correlation with quantitative MR and biomechanical properties. Skelet Radiol 45(4):447–454CrossRefGoogle Scholar
  41. 41.
    Rehnitz C et al (2017) Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) and T2 mapping at 3T MRI of the wrist: Feasibility and clinical application. J Magn Reson Imaging 45(2):381–389PubMedCrossRefGoogle Scholar
  42. 42.
    Al-Ali D et al (2002) Quantitative cartilage imaging of the human hind foot: precision and inter-subject variability. J Orthop Res 20(2):249–256PubMedCrossRefGoogle Scholar
  43. 43.
    Bashir A, Gray ML, Burstein D (1996) Gd-DTPA2− as a measure of cartilage degradation. Magn Reson Med 36(5):665–673PubMedCrossRefGoogle Scholar
  44. 44.
    Owman H et al (2008) Association between findings on delayed gadolinium-enhanced magnetic resonance imaging of cartilage and future knee osteoarthritis. Arthritis Rheum 58(6):1727–1730PubMedCrossRefGoogle Scholar
  45. 45.
    Zilkens C et al (2009) Delayed gadolinium enhanced MRI of cartilage (dGEMRIC): molecular MRI of hip joint cartilage. Orthopade 38(7):591–599PubMedCrossRefGoogle Scholar
  46. 46.
    Schleich C et al (2015) Intra-individual assessment of inflammatory severity and cartilage composition of finger joints in rheumatoid arthritis. Skelet Radiol 44(4):513–518CrossRefGoogle Scholar
  47. 47.
    Trattnig S et al (2010) 23Na MR imaging at 7 T after knee matrix-associated autologous chondrocyte transplantation preliminary results. Radiology 257(1):175–184PubMedCrossRefGoogle Scholar
  48. 48.
    Nebelung S et al (2017) Chondral and osteochondral defects : Representation by imaging methods. Orthopade 46(11):894–906PubMedCrossRefGoogle Scholar
  49. 49.
    Brinkhof S et al (2018) Detection of early cartilage damage: feasibility and potential of gagCEST imaging at 7T. Eur Radiol 28(7):2874–2881PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Akella SV et al (2003) T1rho MR imaging of the human wrist in vivo. Acad Radiol 10(6):614–619PubMedCrossRefGoogle Scholar
  51. 51.
    Schreiner MM et al (2017) New technology in imaging cartilage of the ankle. Cartilage 8(1):31–41PubMedCrossRefGoogle Scholar
  52. 52.
    Brix MO et al (2013) Cartilage repair of the knee with Hyalograft C:(R) magnetic resonance imaging assessment of the glycosaminoglycan content at midterm. Int Orthop 37(1):39–43PubMedCrossRefGoogle Scholar
  53. 53.
    Juras V et al (2012) Comparison of 3T and 7T MRI clinical sequences for ankle imaging. Eur J Radiol 81(8):1846–1850PubMedCrossRefGoogle Scholar
  54. 54.
    Ladd ME et al (2018) Pros and cons of ultra-high-field MRI/MRS for human application. Prog Nucl Magn Reson Spectrosc 109:1–50PubMedCrossRefGoogle Scholar
  55. 55.
    Laistler E et al (2018) In vivo MRI of the human finger at 7 T. Magn Reson Med 79(1):588–592PubMedCrossRefGoogle Scholar
  56. 56.
    Trattnig S et al (2012) Advanced MR methods at ultra-high field (7 Tesla) for clinical musculoskeletal applications. Eur Radiol 22(11):2338–2346PubMedCrossRefGoogle Scholar
  57. 57.
    Welsch GH et al (2012) Magnetic resonance imaging of the knee at 3 and 7 tesla: a comparison using dedicated multi-channel coils and optimised 2D and 3D protocols. Eur Radiol 22(9):1852–1859PubMedCrossRefGoogle Scholar
  58. 58.
    Krug R et al (2009) Imaging of the musculoskeletal system in vivo using ultra-high field magnetic resonance at 7 T. Invest Radiol 44(9):613–618PubMedCrossRefGoogle Scholar
  59. 59.

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • R. Heiss
    • 1
    Email author
  • R. Janka
    • 1
  • M. Uder
    • 1
  • A. M. Nagel
    • 1
    • 2
  • S. Trattnig
    • 3
    • 4
  • F. W. Roemer
    • 1
    • 5
  1. 1.Institute of RadiologyUniversity Hospital ErlangenErlangenDeutschland
  2. 2.Division of Medical Physics in RadiologyGerman Cancer Research Center (DKFZ)HeidelbergDeutschland
  3. 3.High Field MR Center, Department of Biomedical Imaging and Image-guided TherapyMedical University of ViennaWienÖsterreich
  4. 4.CD Laboratory for Clinical Molecular MR ImagingMedical University of ViennaWienÖsterreich
  5. 5.Quantitative Imaging Center (QIC), Department of RadiologyBoston University School of MedicineBostonUSA

Personalised recommendations