Balkenfehlbildungen

Leitthema
  • 33 Downloads

Zusammenfassung

Klinisches Problem

Die Inzidenz der Balkenagenesie liegt etwa bei 1:4000 Geburten. Die Ursachen sind häufig genetisch bedingt (ca. 30–45 % der Fälle): Etwa10 % der Patienten zeigen chromosomale Anomalien, 20–35 % der Patienten weisen genetische Syndrome auf. Aber auch Umweltfaktoren können die Agenesie des Corpus callosum beeinflussen; hierfür bekannt ist z. B. das fetale Alkoholsyndrom. Die Balkenagenesie kann in partiell und vollständig unterteilt werden, tritt sowohl isoliert als auch häufig assoziiert mit weiteren Fehlbildungen des Zentralnervensystems (ZNS) auf (z. B. kortikal, Balkenlipome oder Zysten) oder extrakraniellen Fehlbildungen (z. B. Augen, Gesichtsschädel, kardiovaskulär).

Radiologische Standardverfahren und methodische Innovationen

Die Diagnostik der Balkenfehlbildung erfolgt bildgebend mittels Ultraschall, Computertomographie (CT) oder am besten mittels Magnetresonanztomographie (MRT). Typische Bildbefunde bei der Balkenagenesie sind u. a. Kolpozephalie, hoch sitzender erweiterter 3. Ventrikel, Stierhornkonfiguration der Frontalhörner, Probst-Bündel. Fiber-Tracking und Diffusions-Tensor-Imaging sind diffusionsbasierte, innovative MRT-Verfahren, die Faser- und Bahnabnormalitäten bei Balkenfehlbildungen zusätzlich zur Standarddiagnostik direkt visualisieren können.

Bewertung

Die klinische Korrelation der radiologischen Befunde ist schwierig aufgrund der häufig existenten weiteren ZNS-Fehlbildungen und genetischen Syndrome. Differenzialdiagnosen primärer Balkenfehlbildungen sind v. a. sekundäre Balkenschädigungen, wie z. B. vaskuläre, entzündliche oder posttherapeutische Veränderungen.

Schlüsselwörter

Balkenagenesie/-dysgenesie Probst-Bündel Stierhorn-Ventrikel Kolpozephalie Alkoholembryopathie 

Agenesis of the corpus callosum

Abstract

Clinical issue

Agenesis of the corpus callosum is reported to have an incidence of about 1:4000 live births. In 30–45% of cases, genetic etiologies can be identified, e. g., 10% chromosomal anomalies and 20–35% genetic syndromes. Environmental factors like fetal alcohol syndrome are also known to be prone to callosal agenesis. Callosal agenesis can be complete or partial and can be isolated or associated with other central nervous system (CNS) anomalies (e. g., cortical developmental disorders, callosal lipoma, intracranial cysts) or extra-CNS anomalies (e. g., eyes, face, cardiovascular).

Standard radiological methods and methodical innovations

Diagnosis is made using ultrasound, computed tomography (CT) or best with magnetic resonance imaging (MRI). Typical imaging findings in callosal agenesis are colpocephaly, high riding enlarged third ventricle, Texas Longhorn configuration of frontal horns and so-called Probst bundles parasagittal. Diffusion tensor imaging and fiber-tracking, based on diffusion-weighted techniques, can also visualize fiber/tract anomalies in the patients’ brains.

Assessment

Clinical correlations of callosal agenesis is difficult in general because of the common association of other CNS malformations. Differential diagnosis of primary complete or partial callosal agenesis are secondary callosal changes, e. g. vascular, inflammatory or posttreatment in origin.

Keywords

Callosal agenesis/dysgenesis Probst bundles Texas Longhorn ventricles Colpocephaly Fetal Alcohol Syndrome 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

J. M. Lieb und F. J. Ahlhelm geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Aboitiz F (1992) Brain connections: interhemispheric fiber systems and anatomical brain asymmetries in humans. Biol Res 25:51–61PubMedGoogle Scholar
  2. 2.
    Banich M, Brown WS (2000) A life-span perspective on interaction between the cerebral hemispheres. Dev Neuropsychol 18:1–10CrossRefPubMedGoogle Scholar
  3. 3.
    Barkovich AJ, Kjos BO (1988) Normal postnatal development of the corpus callosum as demonstrated by MR imaging. AJNR Am J Neuroradiol 9:487–491PubMedGoogle Scholar
  4. 4.
    Bedeschi MF et al (2006) Agenesis of the corpus callosum: clinical and genetic study in 63 young patients. Pediatr Neurol 34:186–193CrossRefPubMedGoogle Scholar
  5. 5.
    Bloom JS, Hynd GW (2005) The role of the corpus callosum in interhemispheric transfer of information: excitation or inhibition? Neuropsychol Rev 15:59–71CrossRefPubMedGoogle Scholar
  6. 6.
    Bogen JE (1979) In: Clinical Neuropsychology. Oxford University Press, New York, S 308–359Google Scholar
  7. 7.
    Bogen JE (1985) Handbook of clinical neurology. Elsevier, Amsterdam, S 99–106Google Scholar
  8. 8.
    Clarke JM, Zaidel E (1989) Simple reaction times to lateralized light flashes. Varieties of interhemispheric communication routes. Brain 112:849–870CrossRefPubMedGoogle Scholar
  9. 9.
    Evrard SG (2003) Altered neuron–glia interactions in a low, chronic prenatal ethanol exposure. Brain Res Dev Brain Res 147:119–133CrossRefPubMedGoogle Scholar
  10. 10.
    Guerri C, Pascual M, Renau-PIqueras J (2001) Glia and fetal alcohol syndrome. Neurotoxicology 22:593–599CrossRefPubMedGoogle Scholar
  11. 11.
    Al-Hashim HA et al (2016) Corpus callosum abnormalities: neuroradiological and clinical correlations. Dev Med Child Neurol 58:475–484CrossRefPubMedGoogle Scholar
  12. 12.
    Hofer S, Frahm J (2006) Topography of the human corpus callosum revisited-comprehensive fiber tractography using diffusion tensor magnetic resonance imaging. Neuroimage 32:989–994CrossRefPubMedGoogle Scholar
  13. 13.
    Huang H, Xue R, Zhang J et al (2009) Anatomical characterization of human fetal brain development with diffusion tensor magnetic resonance imaging. J Neurosci 29:4263–4273CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Huang H, Zhang J, Wakana S (2006) White and gray matter development in human fetal, newborn and pediatric brains. Neuroimage 33:27–38CrossRefPubMedGoogle Scholar
  15. 15.
    Kier EL, Truwit CL (1996) The normal and abnormal genu of the corpus callosum: an evolutionary, embryologic, anatomic, and MR analysis. AJNR Am J Neuroradiol 17:1631–1641PubMedGoogle Scholar
  16. 16.
    Lebel C, Walker L, Leemans A (2008) Microstructural maturation of the human brain from childhood to adulthood. Neuroimage 40:1044–1055CrossRefPubMedGoogle Scholar
  17. 17.
    Lee SK et al (2004) Diffusion tensor MR imaging visualizes the altered hemispheric fiber connection in callosal dysgenesis. AJNR Am J Neuroradiol 25:25–28Google Scholar
  18. 18.
    Morriss MC, Zimmerman RA, Bilaniuk LT (1999) Changes in brain water diffusion during childhood. Neuroradiology 41(12):929–934CrossRefPubMedGoogle Scholar
  19. 19.
    Njiokiktjien C (1991) The child’s corpus callosum. In: Pediatric behavioural neurology. Suyi Publicaties, Amsterdam, S 235–250Google Scholar
  20. 20.
    Paul LK, Brown WS, Adolphs R et al (2007) Agenesis of the corpus callosum: genetic, developmental and functional aspects of connectivity. Nat Rev Neurosci 8:287–299CrossRefPubMedGoogle Scholar
  21. 21.
    Paul LK (2011) Developmental malformation of the corpus callosum: a review of typical callosal development and examples of developmental disorders with callosal involvement. J Neurodev Disord 3:3–27CrossRefPubMedGoogle Scholar
  22. 22.
    Rao KC, Harwood-Nash DC (1983) Cranio-cerebral anomalies. In: Rao KC, Lee SH (Hrsg) Cranial computed tomography. McGraw-Hill, New York, S 147–156Google Scholar
  23. 23.
    Roebuck TM, Mattson SN, Riley EP (1998) A review of the neuroanatomical findings in children with fetal alcohol syndrome or prenatal exposure to alcohol. Alcohol Clin Exp Res 22:339–344CrossRefPubMedGoogle Scholar
  24. 24.
    Rubert G (2006) Ethanol exposure during embryogenesis decreases the radial glial progenitor pool and affects the generation of neurons and astrocytes. J Neurosci Res 84:483–496CrossRefPubMedGoogle Scholar
  25. 25.
    Schulte T, Sullivan E, Müller-Oehring E et al (2005) Corpus callosal microstructural integrity influences interhemispheric processing: a diffusion tensor imaging study. Cereb Cortex 15:1384–1392CrossRefPubMedGoogle Scholar
  26. 26.
    Wahl M, Lauterbach-Soon B, Hattingen E et al (2007) Human motor corpus callosum: topography, somatotopy, and link between microstructure and function. J Neurosci 27:12132–12138CrossRefPubMedGoogle Scholar
  27. 27.
    Zaidel D, Sperry RW (1974) Memory impairment after commissurotomy in man. Brain 97:263–272CrossRefPubMedGoogle Scholar
  28. 28.
    Zaidel D, Sperry RW (1977) Some long-term motoreffects of cerebral commissurotomy in man. Neuropsychologia 15:193–204CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Klinik für Radiologie und Nuklearmedizin, Abteilung für diagnostische und interventionelle NeuroradiologieUniversitätspital BaselBaselSchweiz
  2. 2.Imamed Radiologie NordwestBaselSchweiz
  3. 3.Abteilung für NeuroradiologieKantonspital Baden AGBadenSchweiz

Personalised recommendations