Skip to main content
Log in

Methoden der MRT zur Ventilations- und Perfusionsbildgebung der Lunge

MRI methods for pulmonary ventilation and perfusion imaging

  • Leitthema
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Klinisches/methodisches Problem

Die separate Beurteilung von Atemmechanik, Gasaustauschprozessen und Lungenzirkulation ist wesentlich für die Diagnose und Therapie von Lungenerkrankungen. Klinische Lungenfunktionstests sind aufgrund ihrer zumeist nur globalen Aussage oft nicht hinreichend spezifisch in der Differenzialdiagnostik oder eingeschränkt sensitiv bei der Detektion früher pathologischer Veränderungen.

Radiologische Standardverfahren

Standardverfahren der bildgebenden Lungendiagnostik sind die Computertomographie (CT) zur morphologischen Darstellung und die Perfusions-/Ventilationsszintigraphie bzw. „single photon emission computed tomography“ (SPECT) zur funktionellen Diagnostik.

Methodische Innovationen

Zur Darstellung der Lungenventilation stehen die MRT mit hyperpolarisierten Gasen, die O2-verstärkte MRT, die MRT mit fluorierten Gasen und die Fourier-Dekompositions-MRT (FD-MRT) zur Verfügung. Zur Perfusionsbestimmung können die dynamische kontrastmittelverstärkte MRT (DCE-MRT), das „arterial spin labeling“ (ASL) und die FD-MRT verwendet werden.

Leistungsfähigkeit

Bildgebende Verfahren erlauben einen genaueren Einblick in die Pathophysiologie der Lungenfunktion auf regionaler Ebene. Vorteile der MRT sind die fehlende Strahlenbelastung, welche die schonende Akquisition dynamischer Daten ermöglicht sowie die Vielfalt der verfügbaren Kontraste und damit zugänglichen Parameter der Lungenfunktion.

Bewertung

Ausreichende klinische Daten existieren nur für bestimmte Anwendungen der DCE-MRT. Für die übrigen Verfahren gibt es lediglich Machbarkeitsstudien und Fallserien mit unterschiedlichem Umfang. Hyperpolarisierte Gase sind technisch bedingt nur eingeschränkt in der Klinik anwendbar.

Empfehlung für die Praxis

Ein klinischer Einsatz der genannten Verfahren sollte mit Ausnahme der DCE-MRT nur innerhalb von Studien erfolgen.

Abstract

Clinical/methodical issue

Separate assessment of respiratory mechanics, gas exchange and pulmonary circulation is essential for the diagnosis and therapy of pulmonary diseases. Due to the global character of the information obtained clinical lung function tests are often not sufficiently specific in the differential diagnosis or have a limited sensitivity in the detection of early pathological changes.

Standard radiological methods

The standard procedures of pulmonary imaging are computed tomography (CT) for depiction of the morphology as well as perfusion/ventilation scintigraphy and single photon emission computed tomography (SPECT) for functional assessment.

Methodical innovations

Magnetic resonance imaging (MRI) with hyperpolarized gases, O2-enhanced MRI, MRI with fluorinated gases and Fourier decomposition MRI (FD-MRI) are available for assessment of pulmonary ventilation. For assessment of pulmonary perfusion dynamic contrast-enhanced MRI (DCE-MRI), arterial spin labeling (ASL) and FD-MRI can be used.

Performance

Imaging provides a more precise insight into the pathophysiology of pulmonary function on a regional level. The advantages of MRI are a lack of ionizing radiation, which allows a protective acquisition of dynamic data as well as the high number of available contrasts and therefore accessible lung function parameters.

Achievements

Sufficient clinical data exist only for certain applications of DCE-MRI. For the other techniques, only feasibility studies and case series of different sizes are available. The clinical applicability of hyperpolarized gases is limited for technical reasons.

Practical recommendations

The clinical application of the techniques described, except for DCE-MRI, should be restricted to scientific studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Altalag A, Road J, Wilcox P (2009) Pulmonary function tests in clinical practice. Springer London Limited, London, S 1–37

    Book  Google Scholar 

  2. Bauman G, Lützen U, Ullrich M et al (2011) Pulmonary functional imaging: qualitative comparison of Fourier decomposition MR imaging with SPECT/CT in porcine lung. Radiology 260(2):551–559

    Article  PubMed  Google Scholar 

  3. Bauman G, Puderbach M, Deimling M et al (2009) Non-contrast-enhanced perfusion and ventilation assessment of the human lung by means of fourier decomposition in proton MRI. Magn Reson Med 62(3):656–664

    Article  PubMed  Google Scholar 

  4. Bauman G, Puderbach M, Heimann T et al (2013) Validation of Fourier decomposition MRI with dynamic contrast-enhanced MRI using visual and automated scoring of pulmonary perfusion in young cystic fibrosis patients. Eur J Radiol 82(12):2371–2377

    Article  PubMed  Google Scholar 

  5. Bolar DS, Levin DL, Hopkins SR et al (2006) Quantification of regional pulmonary blood flow using ASL-FAIRER. Magn Reson Med 55(6):1308–1317

    Article  CAS  PubMed  Google Scholar 

  6. Couch MJ, Ball IK, Li T et al (2014) Inert fluorinated gas MRI: a new pulmonary imaging modality. NMR Biomed 27(12):1525–1534

    Article  CAS  PubMed  Google Scholar 

  7. de Lange EE, Altes TA, Patrie JT et al (2006) Evaluation of asthma with hyperpolarized helium-3 MRI: correlation with clinical severity and spirometry. Chest 130(4):1055–1062

    Article  PubMed  Google Scholar 

  8. Dregely I, Mugler JP 3rd, Ruset IC et al (2011) Hyperpolarized xenon-129 gas-exchange imaging of lung microstructure: first case studies in subjects with obstructive lung disease. J Magn Reson Imaging 33(5):1052–1062

    Article  PubMed Central  PubMed  Google Scholar 

  9. Ebert M, Grossmann T, Heil W et al (1996) Nuclear magnetic resonance imaging with hyperpolarised helium-3. Lancet 347:1297–1299

    Article  CAS  PubMed  Google Scholar 

  10. Edelman RR, Hatabu H, Tadamura E et al (1996) Noninvasive assessment of regional ventilation in the human lung using oxygen-enhanced magnetic resonance imaging. Nat Med 2:1236–1239

    Article  CAS  PubMed  Google Scholar 

  11. Habib D, Grebenkov D, Guillot G (2008) Gas diffusion in a pulmonary acinus model: experiments with hyperpolarized helium-3. Magn Reson Imaging 26(8):1101–1113

    Article  PubMed  Google Scholar 

  12. Kjørstad Å, Corteville DM, Fischer A et al (2014) Quantitative lung perfusion evaluation using Fourier decomposition perfusion MRI. Magn Reson Med 72(2):558–562

    Article  PubMed  Google Scholar 

  13. Levin DL, Chen Q, Zhang M et al (2001) Evaluation of regional pulmonary perfusion using ultrafast magnetic resonance imaging. Magn Reson Med 46(1):166–171

    Article  CAS  PubMed  Google Scholar 

  14. Ley S, Ley-Zaporozhan J (2012) Pulmonary perfusion imaging using MRI: clinical application. Insights Imaging 3(1):61–71

    Article  PubMed Central  PubMed  Google Scholar 

  15. Lipson DA, Roberts DA, Hansen-Flaschen J et al (2002) Pulmonary ventilation and perfusion scanning using hyperpolarized helium-3 MRI and arterial spin tagging in healthy normal subjects and in pulmonary embolism and orthotopic lung transplant patients. Magn Reson Med 47(6):1073–1076

    Article  PubMed  Google Scholar 

  16. Mai VM, Berr SS (1999) MR perfusion imaging of pulmonary parenchyma using pulsed arterial spin labeling techniques: FAIRER and FAIR. J Magn Reson Imaging 9:483–487

    Article  CAS  PubMed  Google Scholar 

  17. Mentore K, Froh DK, de Lange EE et al (2005) Hyperpolarized HHe 3 MRI of the lung in cystic fibrosis: assessment at baseline and after bronchodilator and airway clearance treatment. Acad Radiol 12(11):1423–1429

    Article  PubMed  Google Scholar 

  18. Miller GW, Mugler JP 3rd, Altes TA et al (2010) A short-breath-hold technique for lung pO2 mapping with 3He MRI. Magn Reson Med 63(1):127–136

    PubMed Central  PubMed  Google Scholar 

  19. Mugler JP 3rd, Altes TA (2013) Hyperpolarized 129Xe MRI of the human lung. J Magn Reson Imaging 37(2):313–331

    Article  PubMed Central  PubMed  Google Scholar 

  20. Mugler JP 3rd, Altes TA, Ruset IC et al (2010) Simultaneous magnetic resonance imaging of ventilation distribution and gas uptake in the human lung using hyperpolarized xenon-129. Proc Natl Acad Sci USA 107(50):21707–21712

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Puderbach M, Risse F, Biederer J et al (2008) In vivo Gd-DTPA concentration for MR lung perfusion measurements: assessment with computed tomography in a porcine model. Eur Radiol 18(10):2102–2107

    Article  PubMed  Google Scholar 

  22. Pusterla O, Bauman G, Sommer G, Jud C, Cattin PC, Bieri O (2015) Three-dimensional oxygen-enhanced human lung MRI using ultra-fast balanced steady-state free precession. Proc Intl Soc Mag Reson Med 23:3978

    Google Scholar 

  23. Risse F, Eichinger M, Kauczor HU et al (2011) Improved visualization of delayed perfusion in lung MRI. Eur J Radiol 77(1):105–110

    Article  PubMed  Google Scholar 

  24. Roach PJ, Bailey DL, Harris BE (2008) Enhancing lung scintigraphy with single-photon emission computed tomography. Semin Nucl Med 38(6):441–499

    Article  PubMed  Google Scholar 

  25. Schönfeld C, Cebotari S, Voskrebenzev A et al (2015) Performance of perfusion-weighted Fourier decomposition MRI for detection of chronic pulmonary emboli. J Magn Reson Imaging 42(1):72–79

    Article  PubMed  Google Scholar 

  26. Sommer G, Bauman G, Koenigkam-Santos M et al (2013) Non-contrast-enhanced preoperative assessment of lung perfusion in patients with non-small-cell lung cancer using Fourier decomposition magnetic resonance imaging. Eur J Radiol 82(12):e879–f887

    Article  PubMed  Google Scholar 

  27. Stadler A, Stiebellehner L, Jakob PM et al (2007) Quantitative and O(2) enhanced MRI of the pathologic lung: findings in emphysema, fibrosis, and cystic fibrosis. Int J Biomed Imaging 2007:23624

    Article  PubMed Central  PubMed  Google Scholar 

  28. Thieme SF, Hoegl S, Nikolaou K et al (2010) Pulmonary ventilation and perfusion imaging with dual-energy CT. Eur Radiol 20(12):2882–2889

    Article  PubMed  Google Scholar 

  29. Triphan SM, Breuer FA, Gensler D, Kauczor HU, Jakob PM (2015) Oxygen enhanced lung MRI by simultaneous measurement of T1 and T2* during free breathing using ultrashort TE. J Magn Reson Imaging 41(6):1708–1714

    Article  PubMed  Google Scholar 

  30. van Beek EJ, Dahmen AM, Stavngaard T et al (2009) Hyperpolarised 3He MRI versus HRCT in COPD and normal volunteers: PHIL trial. Eur Respir J 34(6):1311–1321

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Sommer.

Ethics declarations

Interessenkonflikt

G. Sommer und G. Bauman geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sommer, G., Bauman, G. Methoden der MRT zur Ventilations- und Perfusionsbildgebung der Lunge. Radiologe 56, 106–112 (2016). https://doi.org/10.1007/s00117-015-0074-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-015-0074-6

Schlüsselwörter

Keywords

Navigation