Skip to main content
Log in

Funktionelle MRT 2.0

²³Na- und CEST-Bildgebung

Functional MRI 2.0

²³Na and CEST imaging

  • Leitthema
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

In den letzten Jahren wird die reine morphologische Magnetresonanztomographie (MRT) zunehmend von sogenannten funktionellen Bildgebungsmethoden, wie der diffusionsgewichteten Bildgebung („diffusion-weighted imaging“, DWI), flankiert, um zusätzliche Informationen über Gewebe oder pathologische Prozesse zu gewinnen. In diesem Übersichtsartikel werden 2 MR-Techniken vorgestellt, welche physiologische Prozesse im menschlichen Körper erfassen können. Im Gegensatz zu allen anderen funktionellen MR-Methoden, welche Wasserstoffprotonen für die Bildgebung verwenden, nutzt die erste vorgestellte Technik den Spin anderer Kerne für die Bildgebung und ermöglicht hierdurch eine gänzlich differente Einsicht in den menschlichen Körper. Der Fokus dieses Artikels liegt hierbei auf der 23Na-MRT, da sie aufgrund der MR-günstigen Eigenschaften des Natriumkerns momentan den Schwerpunkt der Forschung im Bereich der sogenannten X-Kern-Bildgebung darstellt.

Bei der zweiten Technik handelt es sich um ein relativ neuartiges MR-Verfahren, die Chemical-exchange-saturation-transfer(CEST)-Bildgebung, welche Austauschprozesse zwischen Protonen in Metaboliten und Protonen in freiem Wasser detektieren kann. Im ersten Teil dieses Artikels werden die technischen Grundlagen, Probleme, Vor- und Nachteile und im zweiten Teil die potenziellen klinischen Anwendungen dieser Techniken beleuchtet. Anwendungsbeispiele kommen aus dem Gebiet der zerebralen Bildgebung (z. B. Schlaganfall, Tumoren), der muskuloskelettalen Bildgebung (z. B. Arthrose, degenerative Prozesse) und der abdominellen Bildgebung (z. B. Niere, Hypertension). Beide Techniken bieten ein unglaubliches Potenzial für die Zukunft, stehen aber bislang noch an der Schwelle zum klinischen Einsatz und werden aktuell nur in ausgewählten universitären Zentren evaluiert.

Abstract

In recent years the purely morphological magnetic resonance imaging (MRI) has been increasingly flanked by so-called functional imaging methods, such as diffusion-weighted imaging (DWI), to obtain additional information about tissue or pathological processes. This review article presents two MR techniques that can detect physiological processes in the human body. In contrast to all other functional MR imaging techniques, which are based on hydrogen protons, the first technique presented (X-nuclei imaging) uses the spin of other nuclei for imaging and consequently allows a completely different insight into the human body. In this article X‑nuclei imaging is focused on sodium (23Na) MRI because it currently represents the main focus of research in this field due to the favorable MR properties of sodium. The second MR technique presented is the relatively novel chemical exchange saturation transfer (CEST) imaging that can detect exchange processes between protons in metabolites and protons in free water. The first part of this article introduces the basic technical principles, problems, advantages and disadvantages of these two MR techniques, whereas the second part highlights the potential clinical applications. Examples illustrate several potential applications in neuroimaging (e. g. stroke and tumors), musculoskeletal imaging (e. g. osteoarthritis and degenerative processes) and abdominal imaging (e. g. kidneys and hypertension). Both techniques inherently contain an incredible potential for future imaging but are still on the threshold of clinical use and are currently under evaluation in many university centers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8

Literatur

  1. Atkinson IC, Claiborne TC, Thulborn KR (2014) Feasibility of 39-potassium MR imaging of a human brain at 9.4 Tesla. Magn Reson Med 71:1819–1825

    Article  CAS  PubMed  Google Scholar 

  2. Babsky AM, Hekmatyar SK, Zhang H et al (2005) Application of 23Na MRI to monitor chemotherapeutic response in RIF-1 tumors. Neoplasia 7:658–666

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Backens M (2010) Grundlagen der MR-Spektroskopie. Radiologe 50:767–774

    Article  CAS  PubMed  Google Scholar 

  4. Darasse L, Ginefri JC (2003) Perspectives with cryogenic RF probes in biomedical MRI. Biochimie 85:915–937

    Article  Google Scholar 

  5. Guermazi A, Roemer FW, Alizai H et al (2015) State of the art: MR imaging after knee cartilage repair surgery. Radiology 277:23–43

    Article  PubMed  Google Scholar 

  6. Haacke EM, Brown RW, Thompson MR et al (1999) Magnetic resonance imaging: physical principles and sequence design. J. Wiley & Sons, New York

    Google Scholar 

  7. Haneder S, Apprich SR, Schmitt B et al (2013) Assessment of glycosaminoglycan content in intervertebral discs using chemical exchange saturation transfer at 3.0 Tesla: preliminary results in patients with low-back pain. Eur Radiol 23:861–868

    Article  PubMed  Google Scholar 

  8. Haneder S, Konstandin S, Morelli JN et al (2011) Na MR imaging of the human kidneys at 3 T : before and after a water load. Radiology 260:857–865

    Article  PubMed  Google Scholar 

  9. Henzler T, Konstandin S, Schmid-Bindert G et al (2012) Imaging of tumor viability in lung cancer: initial results using 23Na-MRI. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 184:340–344

    Article  CAS  PubMed  Google Scholar 

  10. Hofmeister LH, Perisic S, Titze J (2015) Tissue sodium storage: evidence for kidney-like extrarenal countercurrent systems? Pflugers Arch 467:551–558

    Article  CAS  PubMed  Google Scholar 

  11. Jacobs MA, Ouwerkerk R, Wolff AC et al (2011) Monitoring of neoadjuvant chemotherapy using multiparametric, 23Na sodium MR, and multimodality (PET/CT/MRI) imaging in locally advanced breast cancer. Breast Cancer Res Treat 128:119–126

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Juras V, Winhofer Y, Szomolanyi P et al (2015) Multiparametric MR imaging depicts glycosaminoglycan change in the achilles tendon during ciprofloxacin administration in healthy men: initial observation. Radiology 275:763–771

    Article  PubMed Central  PubMed  Google Scholar 

  13. Konstandin S, Nagel AM (2013) Performance of sampling density-weighted and postfiltered density-adapted projection reconstruction in sodium magnetic resonance imaging. Magn Reson Med 69:495–502

    Article  CAS  PubMed  Google Scholar 

  14. Konstandin S, Nagel AM (2014) Measurement techniques for magnetic resonance imaging of fast relaxing nuclei. Magn Reson Mater Phy 27:5–19

    Article  CAS  Google Scholar 

  15. Laymon CM, Oborski MJ, Lee VK et al (2012) Combined imaging biomarkers for therapy evaluation in glioblastoma multiforme: correlating sodium MRI and F-18 FLT PET on a voxel-wise basis. Magn Reson Imaging 30:1268–1278

    Article  PubMed  Google Scholar 

  16. Moon CH, Furlan A, Kim JH et al (2014) Quantitative sodium MR imaging of native versus transplanted kidneys using a dual-tuned proton/sodium (1H/23Na) coil: initial experience. Eur Radiol 24:1320–1326

    Article  PubMed  Google Scholar 

  17. Moon CH, Kim JH, Zhao T et al (2013) Quantitative 23Na MRI of human knee cartilage using dual-tuned 1H/23Na transceiver array radiofrequency coil at 7 Tesla. J Magn Reson Imaging 38:1063–1072

    Article  PubMed  Google Scholar 

  18. Nagel AM, Laun FB, Weber MA et al (2009) Sodium MRI using a density-adapted 3D radial acquisition technique. Magn Reson Med 62:1565–1573

    Article  PubMed  Google Scholar 

  19. Nagel AM, Lehmann-Horn F, Weber MA et al (2014) In vivo 35Cl MR imaging in humans: a feasibility study. Radiology 271:585–595

    Article  PubMed  Google Scholar 

  20. Neumaier-Probst E, Konstandin S, Ssozi J et al (2015) A double-tuned 1H/23Na resonator allows 1H-guided 23Na-MRI in ischemic stroke patients in one session. Int J Stroke 10(Issue Supplement A100):56–61

    Article  PubMed  Google Scholar 

  21. Ouwerkerk R, Bleich KB, Gillen JS et al (2003) Tissue sodium concentration in human brain tumors as measured with 23Na MR imaging. Radiology 227:529–537

    Article  PubMed  Google Scholar 

  22. Sandstede JJW, Hillenbrand H, Beer M et al (2004) Time course of 23Na signal intensity after myocardial infarction in humans. Magn Reson Med 52:545–551

    Article  CAS  PubMed  Google Scholar 

  23. Schepkin VD, Elumalai M, Kitchen JA et al (2014) In vivo chlorine and sodium MRI of rat brain at 21.1 T. Magn Reson Mater Phy 27:63–70

    Article  CAS  Google Scholar 

  24. Thulborn KR, Gindis TS, Davis D et al (1999) Comprehensive MR imaging protocol for stroke management: tissue sodium concentration as a measure of tissue viability in nonhuman primate studies and in clinical studies. Radiology 213:156–166

    Article  CAS  PubMed  Google Scholar 

  25. Tietze A, Blicher J, Mikkelsen IK et al (2014) Assessment of ischemic penumbra in patients with hyperacute stroke using amide proton transfer (APT) chemical exchange saturation transfer (CEST) MRI. NMR Biomed 27:163–174

    Article  PubMed Central  PubMed  Google Scholar 

  26. Togao O, Yoshiura T, Keupp J et al (2014) Amide proton transfer imaging of adult diffuse gliomas: correlation with histopathological grades. Neuro Oncol 16:441448

    Article  Google Scholar 

  27. Umathum R, Rösler MB, Nagel AM (2013) In vivo 39 K MR imaging of human muscle and brain. Radiology 269:569–576

    Article  PubMed  Google Scholar 

  28. Yushmanov VE, Yanovski B, Kharlamov A et al (2009) Sodium mapping in focal cerebral ischemia in the rat by quantitative 23Na MRI. J Magn Reson Imaging 29:962–966

    Article  PubMed Central  PubMed  Google Scholar 

  29. Zaaraoui W, Konstandin S, Audoin B et al (2012) Distribution of brain sodium accumulation correlates with disability in multiple sclerosis: a cross-sectional 23Na MR imaging study. Radiology 264:859–867

    Article  PubMed  Google Scholar 

  30. Zaiss M, Bachert P (2013) Chemical exchange saturation transfer (CEST) and MR Z-spectroscopy in vivo: a review of theoretical approaches and methods. Phys Med Biol 58:R221–R269

    Article  PubMed  Google Scholar 

Download references

Danksagung

Die Autoren danken Herrn J. Budjan für die Überlassung der Abb. 6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Konstandin.

Ethics declarations

Interessenkonflikt

S. Haneder und S. Konstandin geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haneder, S., Konstandin, S. Funktionelle MRT 2.0. Radiologe 56, 159–169 (2016). https://doi.org/10.1007/s00117-015-0071-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-015-0071-9

Schlüsselwörter

Keywords

Navigation