Skip to main content
Log in

Grundlagen und Anwendungen der suszeptibilitätsgewichteten Bildgebung

Principles and applications of susceptibility weighted imaging

  • Leitthema
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Die suszeptibilitätsgewichtete Bildgebung (SWI), ursprünglich entwickelt als verbessertes Verfahren für die zerebrale MR-Venographie, ist inzwischen ein fester Bestandteil der neuroradiologischen Diagnostik und gewinnt zunehmend an Bedeutung in der nichtzerebralen Bildgebung.

Grundlage

Gewebespezifische Suszeptibilitätsunterschiede erzeugen ein lokales Magnetfeld, in dem die Dephasierung der signalgebenden Protonen stattfindet. Dabei kommt es zu einer charakteristischen Phasenverschiebung, die als Kontrastverstärkung in der bekannten T2*-Bildgebung genutzt werden kann.

Klinische Anwendungen

Viele medizinisch relevante Pathologien erzeugen Veränderungen im Gewebe, die auch die magnetischen Eigenschaften beeinflussen. So können Blutungen und Verkalkungen in der SWI besser identifiziert werden als mit konventionellen MR-Sequenzen.

Ausblick

Neuere Techniken wie die quantitative Suszeptibilitätskartierung (QSM) bzw. die Suszeptibilitäts-Tensor-Bildgebung (STI) ermöglichen eine verbesserte Differenzierung zwischen Einblutungen und Verkalkungen bzw. stellen im Bereich der Fasertraktographie eine zur Diffusions-Tensor-Bildgebung alternative Bildgebungsmethode dar.

Abstract

Background

Susceptibility-weighted imaging (SWI), initially developed to provide an improved method for cerebral magnetic resonance (MR) venography, is now an integral part of neuroradiological diagnostics and is steadily gaining importance in non-cerebral imaging.

Principles

Tissue-inherent susceptibility differences generate a local magnetic field in which the dephasing of signal-producing protons occurs. This leads to a characteristic phase shift that can be used as a means to enhance contrast in the well-known T2*-weighted imaging.

Application in clinical routine

Many medically relevant pathologies induce tissue alterations that also influence the magnetic properties of tissue. Thus, the detection of blood residues and calcifications in SWI is superior to conventional MR sequences.

Future prospects

New techniques, such as quantitative susceptibility mapping (QSM) and susceptibility tensor imaging (STI) allow improved differentiation between blood residues and calcifications and provide an alternative imaging method for fiber tractography with respect to diffusion tensor imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9

Literatur

  1. Babikian T, Freier MC, Tong KA et al (2005) Susceptibility weighted imaging: Neuropsychologic outcome and pediatric head injury. Pediatr Neurol 33:184–194

    Article  PubMed  Google Scholar 

  2. Bai Y, Wang M-Y, Han Y-H et al (2013) Susceptibility weighted imaging: a new tool in the diagnosis of prostate cancer and detection of prostatic calcification. PLoS One 8:e53237

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Bosemani T, Verschuuren SI, Poretti A et al (2014) Pitfalls in susceptibility-weighted imaging of the pediatric brain. J Neuroimaging 24:221–225

    Article  PubMed  Google Scholar 

  4. Breckwoldt M, Bendszus M (2015) Cerebral MR imaging of malignant melanoma. Radiologe 55:113–119

    Article  CAS  PubMed  Google Scholar 

  5. Buschle LR, Kurz FT, Kampf T et al (2015) Diffusion-mediated dephasing in the dipole field around a single spherical magnetic object. Magn Reson Imaging 33(9):1126–1245

    Article  PubMed  Google Scholar 

  6. Chang S-X, Li G-W, Chen Y et al (2013) Characterizing venous vasculatures of hepatocellular carcinoma using a multi-breath-hold two-dimensional susceptibility weighted imaging. PLoS One 8:e65895

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Chavhan GB, Babyn PS, Thomas B et al (2009) Principles, techniques, and applications of T2*-based MR imaging and its special applications. Radiographics 29:1433–1449

    Article  PubMed Central  PubMed  Google Scholar 

  8. Chen W, Delproposto Z, Liu W et al (2014) Susceptibility-weighted imaging for the noncontrast evaluation of hepatocellular carcinoma: a prospective study with histopathologic correlation. PLoS One 9:e98303

    Article  PubMed Central  PubMed  Google Scholar 

  9. Deistung A, Schweser F, Wiestler B et al (2013) Quantitative susceptibility mapping differentiates between blood depositions and calcifications in patients with glioblastoma. PLoS One 8:e57924

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Di Ieva A, Göd S, Grabner G et al (2013) Three-dimensional susceptibility-weighted imaging at 7 T using fractal-based quantitative analysis to grade gliomas. Neuroradiology 55:35–40

    Article  PubMed  Google Scholar 

  11. Di Ieva A, Lam T, Alcaide-Leon P et al (2015) Magnetic resonance susceptibility weighted imaging in neurosurgery: current applications and future perspectives. J Neurosurg 123(6):1463–1475

    Article  PubMed  Google Scholar 

  12. Essig M, Reichenbach JR, Schad L et al (2001) High resolution MR-venography of cerebral arteriovenous malformations. Radiologe 41:288–295

    Article  CAS  PubMed  Google Scholar 

  13. Feier D, Balassy C, Bastati N et al (2015) The diagnostic efficacy of quantitative liver MR imaging with diffusion-weighted, SWI, and hepato-specific contrast-enhanced sequences in staging liver fibrosis – a multiparametric approach. Eur Radiol. doi:10.1007/s00330-015-3830-0

    PubMed  Google Scholar 

  14. Haacke E, Reichenbach J (2011) Susceptibility weighted imaging in MRI. John Wiley & Sons, Inc., Hoboken

    Book  Google Scholar 

  15. Haacke EM, Delproposto ZS, Chaturvedi S et al (2007) Imaging cerebral amyloid angiopathy with susceptibility-weighted imaging. Am J Neuroradiol 28:316–317

    CAS  PubMed  Google Scholar 

  16. Haacke EM, Liu S, Buch S et al (2015) Quantitative susceptibility mapping: current status and future directions. Magn Reson Imaging 33:1–25

    Article  PubMed  Google Scholar 

  17. Haacke EM, Mittal S, Wu Z et al (2009) Susceptibility-weighted imaging: technical aspects and clinical applications, part 1. Am J Neuroradiol 30:19–30

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Haase A, Frahm J, Matthael D et al (1986) FLASH Imaging: rapid NMR imaging using low flip-angle pulses. J Magn Reson 67:258–266

    CAS  Google Scholar 

  19. Hermier M, Nighoghossian N, Derex L et al (2001) MRI of acute post-ischemic cerebral hemorrhage in stroke patients: diagnosis with T2*-weighted gradient-echo sequences. Neuroradiology 43:809–815

    Article  CAS  PubMed  Google Scholar 

  20. Hu J, Yu Y, Juhasz C et al (2008) MR susceptibility weighted imaging (SWI) complements conventional contrast enhanced T1 weighted MRI in characterizing brain abnormalities of Sturge-Weber Syndrome. J Magn Reson Imaging 28:300–307

    Article  PubMed Central  PubMed  Google Scholar 

  21. Ide S, Kakeda S, Ueda I et al (2014) Internal structures of the globus pallidus in patients with Parkinson’s disease: evaluation with quantitative susceptibility mapping (QSM). Eur Radiol 25:710–718

    Article  PubMed  Google Scholar 

  22. Jagadeesan BD, Delgado Almandoz JE, Benzinger TL et al (2011) Postcontrast susceptibility-weighted imaging: a novel technique for the detection of arteriovenous shunting in vascular malformations of the brain. Stroke 42:3127–3131

    Article  PubMed Central  PubMed  Google Scholar 

  23. Kidambi A, Biglands JD, Higgins DM et al (2014) Susceptibility-weighted cardiovascular magnetic resonance in comparison to T2 and T2 star imaging for detection of intramyocardial hemorrhage following acute myocardial infarction at 3 Tesla. J Cardiovasc Magn Reson 16:86

    Article  PubMed Central  PubMed  Google Scholar 

  24. Kurz FT, Kampf T, Heiland S et al (2014) Theoretical model of the single spin-echo relaxation time for spherical magnetic perturbers. Magn Reson Med 71:1888–1895

    Article  PubMed  Google Scholar 

  25. Langkammer C, Liu T, Khalil M et al (2013) Quantitative susceptibility mapping in multiple sclerosis. Radiology 267:551–559

    Article  PubMed Central  PubMed  Google Scholar 

  26. Li C, Hu J, Zhou D et al (2014) Differentiation of bland from neoplastic thrombus of the portal vein in patients with hepatocellular carcinoma: application of susceptibility-weighted MR imaging. BMC Cancer 14:590

    Article  PubMed Central  PubMed  Google Scholar 

  27. Li L, Leigh JS (2004) Quantifying arbitrary magnetic susceptibility distributions with MR. Magn Reson Med 51:1077–1082

    Article  PubMed  Google Scholar 

  28. Li W, Liu C (2013) Comparison of magnetic susceptibility tensor and diffusion tensor of the brain. J Neurosci Neuroeng 2:431–440

    Article  PubMed Central  PubMed  Google Scholar 

  29. Li X, Zhu Y, Kang H et al (2015) Glioma grading by microvascular permeability parameters derived from dynamic contrast-enhanced MRI and intratumoral susceptibility signal on susceptibility weighted imaging. Cancer Imaging 15:4

    Article  PubMed Central  PubMed  Google Scholar 

  30. Liu C (2010) Susceptibility tensor imaging. Magn Reson Med 63:1471–1477

    Article  PubMed Central  PubMed  Google Scholar 

  31. Mannion RJ, Cross J, Bradley P et al (2007) Mechanism-based MRI classification of traumatic brainstem injury and its relationship to outcome. J Neurotrauma 24:128–135

    Article  PubMed  Google Scholar 

  32. Mehemed TM, Yamamoto A, Okada T et al (2013) Fat-water interface on susceptibility-weighted imaging and gradient-echo imaging: comparison of phantoms to intracranial lipomas. Am J Roentgenol 201:902–907

    Article  Google Scholar 

  33. Mie MB, Nissen JC, Zöllner FG et al (2010) Susceptibility weighted imaging (SWI) of the kidney at 3 T – initial results. Z Med Phys 20:143–150

    Article  PubMed  Google Scholar 

  34. Mittal S, Wu Z, Neelavalli J et al (2009) Susceptibility-weighted imaging: technical aspects and clinical applications, part 2. Am J Neuroradiol 30:232–252

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Mohammed W, Xunning H, Haibin S et al (2013) Clinical applications of susceptibility-weighted imaging in detecting and grading intracranial gliomas: a review. Cancer Imaging 13:186–195

    Article  PubMed Central  PubMed  Google Scholar 

  36. Mugler JP, Brookeman JR (1990) Three-dimensional magnetization-prepared rapid gradient-echo imaging (3D MP RAGE). Magn Reson Med 15:152–157

    Article  PubMed  Google Scholar 

  37. Nörenberg D, Ebersberger HU, Walter T et al (2015) Diagnosis of calcific tendonitis of the rotator cuff by using susceptibility-weighted MR imaging. Radiology. doi:10.1148/radiol.2015150034

    PubMed  Google Scholar 

  38. Ogawa S, Lee TM, Kay AR et al (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87:9868–9872

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Ogg RJ, Langston JW, Haacke EM et al (1999) The correlation between phase shifts in gradient-echo MR images and regional brain iron concentration. Magn Reson Imaging 17:1141–1148

    Article  CAS  PubMed  Google Scholar 

  40. Park MJ, Kim HS, Jahng G-H et al (2009) Semiquantitative assessment of Intratumoral susceptibility signals using non-contrast-enhanced high-field high-resolution susceptibility-weighted imaging in patients with Gliomas: comparison with MR perfusion imaging. Am J Neuroradiol 30:1402–1408

    Article  CAS  PubMed  Google Scholar 

  41. Pauling L, Coryell CD (1936) The magnetic properties and structure of hemoglobin, oxyhemoglobin and carbonmonoxyhemoglobin. Proc Natl Acad Sci U S A 22:210–216

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Pfefferbaum A, Adalsteinsson E, Rohlfing T et al (2009) MRI estimates of brain iron concentration in normal aging: Comparison of field-dependent (FDRI) and phase (SWI) methods. Neuroimage 47:493–500

    Article  PubMed Central  PubMed  Google Scholar 

  43. Radbruch A, Graf M, Kramp L et al (2012) Differentiation of brain metastases by percentagewise quantification of intratumoral-susceptibility-signals at 3Tesla. Eur J Radiol 81:4064–4068

    Article  PubMed  Google Scholar 

  44. Radbruch A, Mucke J, Schweser F et al (2013) Comparison of susceptibility weighted imaging and TOF-angiography for the detection of Thrombi in acute stroke. PLoS One 8:e63459

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Radbruch A, Wiestler B, Kramp L et al (2013) Differentiation of glioblastoma and primary CNS lymphomas using susceptibility weighted imaging. Eur J Radiol 82:552–556

    Article  PubMed  Google Scholar 

  46. Reichenbach JR, Haacke EM (2001) High-resolution BOLD venographic imaging: a window into brain function. NMR Biomed 14(7–8):453–467

    Article  CAS  PubMed  Google Scholar 

  47. Reichenbach JR, Schweser F, Serres B et al (2015) Quantitative Susceptibility Mapping: Concepts and Applications. Clin Neuroradiol 25(Suppl 2):225–230

    Article  PubMed  Google Scholar 

  48. Reichenbach JR, Venkatesan R, Schillinger DJ et al (1997) Small vessels in the human brain: MR venography with deoxyhemoglobin as an intrinsic contrast agent. Radiology 204:272–277

    Article  CAS  PubMed  Google Scholar 

  49. Salvati M, Formichella AI, D’elia A et al (2009) Cerebral glioblastoma with oligodendrogliomal component: analysis of 36 cases. J Neuro-Oncol 94(1):129–134. doi:10.1007/s11060-009-9815-6

    Article  Google Scholar 

  50. Sedlacik J, Kutschbach C, Rauscher A et al (2008) Investigation of the influence of carbon dioxide concentrations on cerebral physiology by susceptibility-weighted magnetic resonance imaging (SWI). Neuroimage 43:36–43

    Article  PubMed  Google Scholar 

  51. Solak A, Sahin N, Genç B et al (2013) Diagnostic value of susceptibility-weighted imaging of abdominal wall endometriomas during the cyclic menstrual changes: a preliminary study. Eur J Radiol 82:e411–416

    Article  PubMed  Google Scholar 

  52. Takeuchi M, Matsuzaki K, Harada M (2015) Susceptibility-weighted MRI of extra-ovarian endometriosis: preliminary results. Abdom Imaging 40:2512–2516

    Article  PubMed  Google Scholar 

  53. Taupitz M, Schnorr J, Abramjuk C et al (2000) New generation of monomer-stabilized very small superparamagnetic iron oxide particles (VSOP) as contrast medium for MR angiography: preclinical results in rats and rabbits. J Magn Reson Imaging 12:905–911

    Article  CAS  PubMed  Google Scholar 

  54. Thomas B, Somasundaram S, Thamburaj K et al (2008) Clinical applications of susceptibility weighted MR imaging of the brain – a pictorial review. Neuroradiology 50:105–116

    Article  PubMed  Google Scholar 

  55. Toh CH, Wei K-C, Chang C-N et al (2012) Differentiation of pyogenic brain abscesses from necrotic glioblastomas with use of susceptibility-weighted imaging. Am J Neuroradiol 33:1534–1538

    Article  CAS  PubMed  Google Scholar 

  56. Tong KA, Ashwal S, Holshouser BA et al (2003) Hemorrhagic shearing lesions in children and adolescents with posttraumatic diffuse axonal injury: improved detection and initial results1. Radiology 227:332–339

    Article  PubMed  Google Scholar 

  57. Tong KA, Ashwal S, Obenaus A et al (2008) Susceptibility-weighted MR imaging: a review of clinical applications in children. Am J Neuroradiol 29:9–17

    Article  CAS  PubMed  Google Scholar 

  58. Von Kummer R (2002) MRI: the new gold standard for detecting brain hemorrhage? Stroke 33:1748–1749

    Article  Google Scholar 

  59. Wang S, Lou M, Liu T et al (2013) Hematoma volume measurement in gradient echo MRI using quantitative susceptibility mapping. Stroke 44:2315–2317

    Article  PubMed Central  PubMed  Google Scholar 

  60. Wycliffe ND, Choe J, Holshouser B et al (2004) Reliability in detection of hemorrhage in acute stroke by a new three-dimensional gradient recalled echo susceptibility-weighted imaging technique compared to computed tomography: a retrospective study. J Magn Reson Imaging 20:372–377

    Article  PubMed  Google Scholar 

  61. Xie L, Sparks MA, Li W et al (2013) Quantitative susceptibility mapping of kidney inflammation and fibrosis in type 1 angiotensin receptor-deficient mice. NMR Biomed 26:1853–1863

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Xing W, He X, Kassir MA et al (2013) Evaluating hemorrhage in renal cell carcinoma using susceptibility weighted imaging. PLoS One 8:e57691

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Zhang J, Tao R, You Z et al (2013) Gamna-Gandy bodies of the spleen detected with susceptibility weighted imaging: maybe a new potential non-invasive marker of esophageal varices. PLoS One 8:e55626

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Zhong K, Leupold J, Von Elverfeldt D et al (2008) The molecular basis for gray and white matter contrast in phase imaging. Neuroimage 40:1561–1566

    Article  PubMed  Google Scholar 

  65. Ziener CH, Kampf T, Herold V et al (2008) Frequency autocorrelation function of stochastically fluctuating fields caused by specific magnetic field inhomogeneities. J Chem Phys 129:014507

    Article  CAS  PubMed  Google Scholar 

  66. Ziener CH, Kampf T, Kurz FT (2015) Diffusion propagators for hindered diffusion in open geometries. Concepts Magn Reson Part A 44(3):150–159

    Article  CAS  Google Scholar 

  67. Ziener CH, Kampf T, Reents G et al (2012) Spin dephasing in a magnetic dipole field. Phys Rev E Stat Nonlin Soft Matter Phys 85(5 Pt 1):051908

    Article  CAS  PubMed  Google Scholar 

  68. Ziener CH, Kurz FT, Kampf T (2015) Free induction decay caused by a dipole field. Physical review. Phys Rev E Stat Nonlin Soft Matter Phys 91:032707

    Article  CAS  PubMed  Google Scholar 

  69. Zulfiqar M, Dumrongpisutikul N, Intrapiromkul J et al (2012) Detection of Intratumoral Calcification in Oligodendrogliomas by Susceptibility-Weighted MR Imaging. Am J Neuroradiol 33:858–864

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. H. Ziener.

Ethics declarations

Interessenkonflikt

F.T. Kurz, M. Freitag, H.-P. Schlemmer, M. Bendszus und C.H. Ziener geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurz, F.T., Freitag, M., Schlemmer, HP. et al. Grundlagen und Anwendungen der suszeptibilitätsgewichteten Bildgebung. Radiologe 56, 124–136 (2016). https://doi.org/10.1007/s00117-015-0069-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-015-0069-3

Schlüsselwörter

Keywords

Navigation