Zusammenfassung
Schnittbildmethoden sind heute der Standard bei der Ausbreitungsdiagnostik ab Stadium III des malignen Melanoms. Das frühere zeit- und kostenaufwendige multimodale Konzept wird heute durch Ganzkörper(GK)-Stagingmethoden, wie die 18F-Fluordeoxyglukose(FDG)-Positronenemissionstomographie(PET)-CT und GK-MRT zunehmend ersetzt, da diese Methoden eine GK-Untersuchung in vertretbarer Zeit mit hoher diagnostischer Genauigkeit bieten. Zahlreiche Studien belegen die hohe Sensitivität (> 85 %) und Spezifität (> 90 %) der FDG-PET-CT beim Nachweis von Melanommetastasen, welche die Treffsicherheit der konventionellen Stagingmethoden, insbesondere der CT, übertreffen und bis zu einem Drittel der Fälle zu einer Änderung des therapeutischen Managements führen. Dies gilt insbesondere für das Staging vor einer kurativen Metastasenchirurgie. Die begrenzte Sensitivität der PET für Läsionen kleiner als 1 cm und die mangelnde Fähigkeit, mikroskopische Metastasen zu entdecken, limitieren den Nutzen der PET-CT für Patienten mit Melanom im Stadium I und II. Bei fehlender praktischer und ökonomischer Verfügbarkeit der PET-CT können im klinischen Alltag die GK-CT oder GK-MRT alternativ eingesetzt werden. Die GK-MRT einschließlich Diffusionswichtung („diffusion-weighted imaging“, DWI) hat sich zu einer konkurrenzfähigen Alternative zur PET-CT entwickelt, prospektive vergleichende Studien sind allerdings noch selten und weisen zudem kleine Fallzahlen und ein heterogenes Studiendesign auf. Betrachtet man die Genauigkeit der beiden Methoden, bezogen auf die verschiedenen Metastasenlokalisationen, wird deutlich, dass Sensitivität und Spezifität von PET-CT und GK-MRT organabhängig differieren. Es zeigen sich Vorteile der PET-CT in der Detektion von Lymphknoten-, Weichteil- und Lungenmetastasen und eine Überlegenheit der MRT für Hirn-, Leber- und Knochenläsionen. Der Stellenwert der PET-MRT für die Ausbreitungsdiagnostik beim Melanom wird derzeit in klinischen Studien geprüft.
Abstract
Cross-sectional imaging methods are currently the standard methods for staging of advanced melanoma. The former time-consuming and expensive multimodality approach is increasingly being replaced by novel whole-body (WB) staging methods, such as 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG-PET-CT) and whole-body magnetic resonance imaging (WBMRI) because they offer a complete head-to-toe coverage of the patient in a single examination with an accurate and sensitive detection of tumor spread. Several studies in patients with advanced melanoma revealed that PET-CT is more sensitive and specific than conventional modalities, such as CT alone resulting in a change of management in up to 30 % of cases. Due to the limited sensitivity of PET for lesions smaller than 1 cm, PET-CT is not useful for the initial work-up of patients with stage I and II melanoma but has proven to be superior for detection of distant metastases, which is essential prior to surgical metastasectomy. If PET-CT is not available WB-CT or WB-MRI can alternatively be used and WB-MRI including diffusion-weighted imaging (DWI) has become a real alternative for staging of melanoma patients. So far, however, only few reports suffering from small numbers of cases and heterogeneous design have compared the diagnostic performance of WB-MRI and PET-CT. The preliminary results indicate a high overall diagnostic accuracy of both methods; however, these methods differ in organ-based detection rates: PET-CT was more accurate in N-staging and detection of lung and soft tissue metastases whereas WB-MRI was superior in detecting liver, bone and brain metastases. The value of PET-MRI for staging of advanced melanoma is the subject of ongoing clinical studies.
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Literatur
Antoch G, Vogt FM, Bockisch A et al (2004) Whole-body tumor staging: MRI or FDG-PET/CT? Radiologe 44:882–888
Bastiaannet E, Wobbes T, Hoekstra OS et al (2009) Prospective comparison of [18F]fluorodeoxyglucose positron emission tomography and computed tomography in patients with melanoma with palpable lymph node metastases: diagnostic accuracy and impact on treatment. J Clin Oncol 27:4774–4780
Bastiaannet E, Uyl-de Groot CA, Brouwers AH et al (2012) Cost-effectiveness of adding FDG-PET or CT to the diagnostic work-up of patients with stage III melanoma. Ann Surg 255:771–776
Bronstein Y, Ng CS, Rohren E et al (2012) PET/CT in the management of patients with stage IIIC and IV metastatic melanoma considered candidates for surgery: evaluation of the additive value after conventional imaging. AJR Am J Roentgenol 198:902–908
Buchbender C, Heusner TA, Lauenstein TC et al (2012) Oncologic PET/MRI, part 2: bone tumors, soft-tissue tumors, melanoma, and lymphoma. J Nucl Med 53:1244–1252
Danielsen M, Højgaard L, Kjær A, Fischer BM (2013) Positron emission tomography in the follow-up of cutaneous malignant melanoma patients: a systematic review. Am J Nucl Med Mol Imaging 4:17–28
Finkelstein SE, Carrasquillo JA, Hoffman JM et al (2004) A prospective analysis of positron emission tomography and conventional imaging for detection of stage IV metastatic melanoma in patients undergoing metastasectomy. Ann Surg Oncol 11:731–738
Friedman KP, Wahl RL (2004) Clinical use of positron emission tomography in the management of cutaneous melanoma. Semin Nucl Med 34:242–253
Fuster D, Chiang S, Johnson G et al (2004) Is 18F-FDG-PET more accurate than standard diagnostic procedures in the detection of suspected recurrent melanoma? J Nucl Med 45:1323–1327
Gulec SA, Faries MB, Lee CC et al (2003) The role of fluorine-18 deoxyglucose positron emission tomography in the management of patients with metastatic melanoma: impact on surgical decision making. Clin Nucl Med 28:961–965
Harris MT, Berlangieri SU, Cebon JS et al (2005) Impact of 2-Deoxy-2[F-18]Fluoro-D-glucose positron emission tomography on the management of patients with advanced melanoma. Mol Imaging Biol 7:304–308
Hausmann D, Jochum S, Utikal J et al (2011) Comparison of the diagnostic accuracy of whole-body MRI and whole-body CT in stage III/IV malignant melanoma. J Dtsch Dermatol Ges 9:212–222
Jiménez-Requena F, Delgado-Bolton RC, Fernández-Pérez C et al (2010) Meta-analysis of the performance of (18)F-FDG PET in cutaneous melanoma. Eur J Nucl Med Mol Imaging 37:284–300
Jouvet JC, Thomas L, Thomson V et al (2013) Whole-body MRI with diffusion-weighted sequences compared with 18 FDG PET-CT, CT and superficial lymph node ultrasonography in the staging of advanced cutaneous melanoma: a prospective study. J Eur Acad Dermatol Venereol. doi:10.1111/jdv.12078 (Epub ahead of print)
Krug B, Crott R, Lonneux M et al (2008) Role of PET in the initial staging of cutaneous malignant melanoma: systematic review. Radiology 249:836–844
Krug B, Crott R, Roch I et al (2010) Cost-effectiveness analysis of FDG PET-CT in the management of pulmonary metastases from malignant melanoma. Acta Oncol 49:192–200
Laurent V, Trausch G, Bruot O et al (2010) Comparative study of two whole-body imaging techniques in the case of melanoma metastases: advantages of multi-contrast MRI examination including a diffusion-weighted sequence in comparison with PET-CT. Eur J Radiol 75:376–383
Mosavi F, Ullenhag G, Ahlstrom H (2013) Whole-body MRI including diffusion-weighted imaging compared to CT for staging of malignant melanoma. Ups J Med Sci 118:91–97
Muller-Horvat C, Radny P, Eigentler TK et al (2006) Prospective comparison of the impact on treatment decisions of whole-body magnetic resonance imaging and computed tomography in patients with metastatic malignant melanoma. Eur J Cancer 42:342–350
Petralia G, Padhani A, Summers P et al (2013) Whole-body diffusion-weighted imaging: is it all we need for detecting metastases in melanoma patients? Eur Radiol 23:3466–3476
Pfannenberg C, Aschoff P, Schanz S et al (2007) Prospective comparison of 18F-fluorodeoxyglucose positron emission tomography/computed tomography and whole-body magnetic resonance imaging in staging of advanced malignant melanoma. Eur J Cancer 43:557–564
Pflugfelder A, Kochs C, Blum A et al (2013) S3-guideline „diagnosis, therapy and follow-up of melanoma“ – short version. J Dtsch Dermatol Ges 11:563–602
Pfluger T, Melzer HI, Schneider V et al (2011) PET/CT in malignant melanoma: contrast-enhanced CT versus plain low-dose CT. Eur J Nucl Med Mol Imaging 38:822–831
Prichard RS, Hill ADK, Skehan SJ, O’Higgins NJ (2002) Positron emission tomography for staging and management of malignant melanoma. Br J Surg 89:389–396
Rueth NM, Xing Y, Chiang YJ et al (2014) Is surveillance imaging effective for detecting surgically treatable recurrences in patients with melanoma? A comparative analysis of stage-specific surveillance strategies. Ann Surg 259:1215–1222
Schmidt GP, Baur-Melnyk A, Herzog P et al (2005) High-resolution whole-body magnetic resonance image tumor staging with the use of parallel imaging versus dual-modality positron emission tomography-computed tomography: experience on a 32-channel system. Invest Radiol 40:743–753
Steinert HC, Huch Böni RA, Buck A et al (1995) Malignant melanoma: staging with whole-body positron emission tomography and 2-(F-18)-fluoro-2-deoxy-D-glucose. Radiology 195:705–709
Strobel K, Dummer R, Husarik DB et al (2007) High-risk melanoma: accuracy of FDG PET/CT with added CT morphologic information for detection of metastases. Radiology 244:566–574
Tyler DS, Onaitis M, Kherani A et al (2000) Positron emission tomography scanning in malignant melanoma. Cancer 89:1019–1025
Xing Y, Bronstein Y, Ross MI et al (2011) Contemporary diagnostic imaging modalities for the staging and surveillance of melanoma patients: a meta-analysis. J Natl Cancer Inst 103:129–142
Einhaltung ethischer Richtlinien
Interessenkonflikt. C. Pfannenberg und N. Schwenzer geben an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Pfannenberg, C., Schwenzer, N. Ganzkörperdiagnostik beim malignen Melanom. Radiologe 55, 120–126 (2015). https://doi.org/10.1007/s00117-014-2762-z
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00117-014-2762-z