Skip to main content
Log in

Gastroenteropankreatische endokrine Tumoren

Gastroenteropancreatic endocrine tumors

  • Leitthema
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Klinisches/methodisches Problem

Gastroenteropankreatische endokrine Tumoren bilden eine heterogene, seltene Tumorgruppe, die ca. 2 % aller gastrointestinalen Tumoren ausmacht.

Radiologische Standardverfahren

Für die Lokalisation des Primärtumors als auch für das Staging endokriner Tumoren spielen neben der Ultraschalldiagnostik die Computertomographie (CT), die Magnetresonanztomographie (MRT) und die Positronenemissionstomographie-Computertomographie (PET-CT) eine entscheidende Rolle.

Methodische Innovationen

Neben dem Primärstaging lassen sich mithilfe der PET-CT mit Somatostatinanaloga auch die Indikation für eine Radionuklidtherapie stellen und der Therapieverlauf dokumentieren.

Leistungsfähigkeit

Das CT-Enteroklysma erreicht nach der Literatur bei Dünndarmtumoren bis 3 cm eine Sensitivität von 84,7 %, eine Spezifität von 96,9 %; mit der Magnetresonanzenterographie (MRE) kann ein neuroendokriner Tumor (NET) des Dünndarms in 93,3 % der Fälle lokalisiert werden. Laut Literatur ist die MRT bei der Detektion pankreatischer NET mit einer Sensitivität zwischen 74 und 100 % der CT überlegen. Die PET-CT ermöglicht die Detektion sehr kleiner Primärtumoren und gilt als sensitivste Methode zur Lokalisationsdiagnostik. Bei der Detektion von Lebermetastasen ist die MRT der CT und der PET-CT überlegen.

Bewertung

Aufgabe der bildgebenden Diagnostik ist es, neben der Lokalisation des Primärtumors und dem Staging, Therapien zu planen und ein Therapieansprechen zu dokumentieren. Die Wahl der verschiedenen bildgebenden Verfahren hierfür ist abhängig von der Lokalisation des Primärtumors.

Empfehlung für die Praxis

Da gastroenteropankreatische neuroendokrine Tumoren (GEP-NET) überwiegend hypervaskularisiert sind, ist eine biphasische Untersuchungstechnik nach Kontrastmittelgabe in arterieller und venöser Phase für die Abklärung von Primärtumoren und Metastasen sowohl in der CT wie in der MRT obligat. Für das Ganzkörperstaging kommen vorrangig CT und PET-CT zum Einsatz.

Abstract

Clinical/methodical issue

Gastroenteropancreatic neuroendocrine tumors (GEP-NET) are a rare, heterogeneous group of neoplasms. Only 2 % of gastrointestinal tumors belong to the group of neuroendocrine neoplasms.

Standard radiological methods

A wide spectrum of diagnostic imaging modalities is available: apart from ultrasound not only computed tomography (CT) but also magnetic resonance imaging (MRI) and positron emission tomography CT (PET-CT) play an important role in detection and staging of GEP-NETs.

Methodical innovations

The PET-CT technique with somatostatin analogues is used for staging as well as for evaluation and monitoring of treatment with peptide radionuclide radiation therapy.

Performance

According to the literature NETs of the small bowel with a size over 3 cm can be detected with a sensitivity of 84.7 % and a specificity of 96.6 % using CT enteroclysis and MR enteroclysis provides the detection of NETs of the small bowel in 93.3 % of cases. ’The sensitivity of MRI in detection of pancreatic NETs is between 74 % and 100 % and is, therefore, higher than CT. Detection of small primary tumors is carried out using PET-CT and seems to be the most sensitive imaging modality to identify the exact location. On the other hand MRI has to be regarded as the best imaging modality for detection of liver metastases compared to CT and PET-CT.

Achievements

The role of diagnostic imaging is to identify the exact location of the primary tumor and possible metastases, to define an appropriate therapy and to monitor treatment effects; however, the choice of the most appropriate diagnostic imaging modality varies depending on the location and type of the primary tumor.

Practical recommendations

The GEP-NETs are predominantly well-vascularized; therefore, dual-phase CT/MR imaging with the arterial and venous phases after contrast media injection is mandatory for detection and localization of primary tumors and metastases. For whole body staging CT and PET-CT should be performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Meeker A, Heaphy C (2014) Gastroenteropancreatic endocrine tumors. Mol Cell Endocinol 386:101–120

    Article  CAS  Google Scholar 

  2. Díez M, Teulé A, Salazar R (2013) Gastroenteropancreatic neuroendocrine tumors: diagnosis and treatment. Ann Gastroenterol 26:29–36

    PubMed  PubMed Central  Google Scholar 

  3. Scheidhauer K, Miederer M, Gaertner FC (2009) PET-CT for neuroendocrine tumors and nuclear medicine therapy options. Radiologe 49:217–223

    Article  PubMed  CAS  Google Scholar 

  4. Chang S, Choi D, Lee SJ et al (2007) Neuroendocrine neoplasms of the gastrointestinal tract: classification, pathologic basis, and imaging features. Radiographics 27:1667–1679

    Article  PubMed  Google Scholar 

  5. Kloppel G, Perren A, Heitz PU (2004) The gastroenteropancreatic neuroendocrine cell system and its tumors: the WHO classification. Ann N Y Acad Sci 1014:13–27

    Article  PubMed  Google Scholar 

  6. Rindi G, Arnold R, Bosman FT (2010) Nomenclature and classification of neuroendocrine neoplasms of the digestive system. In: Bosman FT, Carneiro F, Hruban RH, Theise ND et al (Hrsg) WHO classification of tumors of the digestive system. IARC Press, Lyon

  7. Rindi G, Klöppel G, Alhman H et al (2006) TNM staging of foregut (neuroendocrine) tumors: a consensus proposal including a grading system. Virchows Arch 449:395–401

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Rindi G, Klöppel G, Couvelard A et al (2007) TNM staging of midgut and hindgut (neuro) endocrine tumors: a consensus proposal including a grading system. Virchows Arch 451:757–762

    Article  PubMed  CAS  Google Scholar 

  9. Sobin L, Gospodarowicz M, Wittekind C (2010) TNM classification of malignant tumours, 7. Aufl. Wiley-Blackwell, Oxford

  10. Modlin IM, Lye KD, Kidd M (2003) A 5-decade analysis of 13,715 carcinoid tumors. Cancer 97:934–959

    Article  PubMed  Google Scholar 

  11. Perren A, Schmitt A, Komminoth P et al (2009) Classification of gastro-entero-pancreatic neuroendocrine tumors. Radiologe 49:198–205

    Article  PubMed  CAS  Google Scholar 

  12. Dux M, Richter GM, Hansmann J, Kuntz C et al (1999) Helical hydro-CT for diagnosis and staging of gastric carcinoma. J Comput Assist Tomogr 23:913–922

    Article  PubMed  CAS  Google Scholar 

  13. Horton KM, Kamel I, Hofmann L et al (2004) Carcinoid tumors of the small bowel: a multitechnique imaging approach. AJR Am J Roentgenol 182:559–567

    Article  PubMed  Google Scholar 

  14. Tamm EP, Kim EE, Chaan S (2007) Imaging of neuroendocrine tumors. Hematol Oncol Clin North Am 21:409–432

    Article  PubMed  Google Scholar 

  15. Schmid-Tannwald C, Zech CJ, Panteleon A et al (2009) Characteristic imaging features of carcinoid tumors of the small bowel in MR enteroclysis. Radiologe 49:242–245

    Article  PubMed  CAS  Google Scholar 

  16. Pilleul F, Penigaud M, Milot L et al (2006) Possible small-bowel neoplasms: contrast-enhanced and water-enhanced multidetector CT enteroclysis. Radiology 241:796–801

    Article  PubMed  Google Scholar 

  17. Phan GQ, Yeo CJ, Hruban RH et al (1998) Surgical experience with pancreatic and peripancreatic neuroendocrine tumors: review of 125 patients. J Gastrointest Surg 2:427

    Google Scholar 

  18. Vick C, Zech CJ, Hopfner S et al (2003) Imaging of neuroendocrine tumors of the pancreas. Radiologe 43:293–300

    Article  PubMed  CAS  Google Scholar 

  19. Semelka RC, Cumming MJ, Shoenut JP et al (1993) Islet cell tumors: comparison of dynamic contrast-enhanced CT and MR imaging with dynamic gadolinium enhancement and fat suppression. Radiology 186:799–802

    Article  PubMed  CAS  Google Scholar 

  20. Ichikawa T, Peterson MS, Federle MP (2000) Islet cell tumor of the pancreas: biphasic CT versus MR imaging in tumor detection. Radiology 216:163–171

    Article  PubMed  CAS  Google Scholar 

  21. Schmid-Tannwald C, Schmid-Tannwald CM, Morelli JN et al (2013) Comparison of abdominal MRI with diffusion-weighted imaging to 68Ga-DOTATATE PET/CT in detection of neuroendocrine tumors of the pancreas. Eur J Nucl Med Mol Imaging 40:897–907

    Article  PubMed  CAS  Google Scholar 

  22. Schima W, Ba-Ssalamah A, Goetzinger P et al (2007) State-of-the-art magnetic resonance imaging of pancreatic cancer. Top Magn Reson Imaging 18:421–429

    Article  PubMed  Google Scholar 

  23. Dromain C, Baere T de, Baudin E et al (2003) MR imaging of hepatic metastases caused by neuroendocrine tumors: comparing four techniques. AJR Am J Roentgenol 180:121–128

    Article  PubMed  Google Scholar 

  24. Sommer WH, Zech CJ, Bamberg F et al (2012) Fluid-fluid level n hepatic metastases: a characteristic sign of metastases of neuroendocrine origin. Eur J Radiol 81:2127–2132

    Article  PubMed  Google Scholar 

  25. Paulson E, McDermott VG, Keogan MT et al (1998) Carcinoid metastases to the liver: role of triple-phase helical CT. Radiology 206:143–150

    Article  PubMed  CAS  Google Scholar 

  26. Zech C, Herrmann KA, Reiser MF et al (2007) MR imaging in patients with suspected liver metastases: value of liver-specific contrast agent Gd-EOB-DTPA. Magn Reson Med Sci 6:43–52

    Article  PubMed  Google Scholar 

  27. Schmid-Tannwald C, Thomas S, Dahi F et al (2013) Diffusion weighted MR imaging of metastatic liver lesions: is there a difference between hypervascular and hypovascular metastases? Acta Radiol [epub ahead of print], PMID: 23986455)

  28. Haug AR, Assmann G, Rist C et al (2010) Quantification of immunohistochemical expression of somatostatin receptors in neuroendocrine tumors using 68Ga-DOTATATE PET/CT. Radiologe 50:349–354

    Article  PubMed  CAS  Google Scholar 

  29. Schreiter NF, Nogami M, Steffen I et al (2012) Evaluation of the potential of PET-MRI fusion for detection of liver metastases in patients with neuroendocrine tumours. Eur Radiol 22:458–467

    Article  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. C. Schmid-Tannwald, C.M. Schmid-Tannwald, M.F. Reiser und F. Berger geben an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Schmid-Tannwald.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmid-Tannwald, C., Schmid-Tannwald, C., Reiser, M. et al. Gastroenteropankreatische endokrine Tumoren. Radiologe 54, 989–997 (2014). https://doi.org/10.1007/s00117-014-2689-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-014-2689-4

Schlüsselwörter

Keywords

Navigation