Skip to main content
Log in

PET-CT in der nuklearmedizinischen Diagnostik des multiplen Myeloms

PET-CT for nuclear medicine diagnostics of multiple myeloma

  • Leitthema
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Funktionelle oder morphologisch-funktionelle bildgebende Verfahren werden in der Diagnostik und im Therapiemanagement des multiplen Myeloms (MM) primär für wissenschaftliche Zwecke eingesetzt. Ein routinemäßiger klinischer Einsatz ist trotz neuer Stadieneinteilung nicht erfolgt.

Fragestellung

Die Wertigkeit der Positronenemissionstomographie (PET) ist noch offen. Die Rolle von PET und PET-CT für die Diagnostik und das Therapiemanagement wird diskutiert.

Ergebnisse

Die PET mit Fluordesoxyglukose (FDG) erlaubt die Erfassung vitaler Myleomläsionen und korreliert zum Stadium der Erkrankung. Eine negative FDG-Untersuchung korreliert mit einer besseren Prognose. Die Anzahl der fokalen Läsionen sowie das gesamte funktionelle Volumen gemessen mit FDG haben eine prognostische Bedeutung. Mehrere Studien belegen die Wertigkeit der FDG für die Beurteilung des Therapieeffekts und zeigen, dass FDG im Vergleich zur MRT ein früherer Indikator für das Ansprechen ist. Die CT-Komponente der neuen Hybridsysteme ermöglicht die Erfassung osteolytischer Läsionen im CT und deren Vitalität in der FDG. Die Kombination eines PET-Scanners mit einem MRT erlaubt die simultane Erfassung des Knochenmarkbefalls und der Vitalität.

Schlussfolgerung

Der Einsatz moderner Hybridscanner wie PET-CT und PET-MRT ermöglicht die simultane Erfassung vitaler Myelomläsionen, osteolytischer Läsionen und des Knochenmarkbefalls im gesamten Körper und wird zunehmend eine größere Rolle sowohl für die Diagnostik als auch für das Therapiemonitoring spielen.

Abstract

Background

Functional or morphofunctional imaging modalities are used in myeloma patients for the diagnosis and therapy management within research protocols. Despite new staging criteria, which take into account the viability of a myeloma lesion, positron emission tomography (PET) is not used routinely.

Objectives

The impact of PET is therefore open. The role of PET and PET computed tomography (PET-CT) for the diagnosis and therapy management is discussed.

Results

The use of PET with 18F-fluorodeoxyglucose (FDG) allows the measurement of viable myeloma lesions and correlates with the stage of disease. A negative FDG examination correlates with a better prognosis. Furthermore, the number of focal lesions as well as the whole functional volume of myeloma lesions in FDG have a prognostic impact. Several studies have demonstrated the impact of FDG for the assessment of therapy monitoring and show that FDG is an earlier indicator for therapy response as compared to magnetic resonance imaging (MRI). The CT component of the new hybrid systems allows the assessment of osteolytic lesions in CT and their viability in FDG. The combination of PET with an MRT scanner allows the simultaneous measurement of bone marrow infiltration, focal lesions and their viability.

Conclusion

The use of modern hybrid scanners, such as PET-CT and PET-MRT facilitates the simultaneous measurement of viable myeloma lesions, osteolytic lesions and bone marrow infiltration in the whole body; therefore, it is expected that these imaging modalities will play a greater role both in diagnosis and therapy management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. http://www.dgho-onkopedia.de/de/onkopedia/leitlinien/multiples-myelom

  2. Landgren O, Kyle RA, Pfeiffer RM et al (2009) Monoclonal gammopathy of undetermined significance (MGUS) consistently precedes multiple myeloma: a prospective study. Blood 113:5412–5417

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Zingone A, Kuehl WM (2011) Pathogenesis of monoclonal gammopathy of undetermined significance and progression to multiple myeloma. Semin Hematol 48:4–12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Korde N, Kristinsson SY, Landgren O (2011) Monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM): novel biological insights and development of early treatment strategies. Blood 117:5573–5581

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Durie BG, Salmon SE (1975) A clinical staging system for multiple myeloma: correlation of measured myeloma cell mass with presenting clinical features, response to treatment, and survival. Cancer 36:842–854

    Article  CAS  PubMed  Google Scholar 

  6. Durie BG (2006) The role of anatomic and functional staging in myeloma: description of Durie/Salmon plus staging system. Eur J Cancer 42:1539–1543

    Article  PubMed  Google Scholar 

  7. Bredella MA, Steinbach L, Caputo G et al (2005) Value of FDG PET in the assessment of patients with multiple myeloma. Am J Roentgenol 184:1199–1204

    Article  Google Scholar 

  8. Park S, Lee SJ, Chang WJ et al (2013) Positive correlation between baseline PET or PET/CT findings and clinical parameters in multiple myeloma patients. Acta Haematol 131:193–199

    Article  PubMed  Google Scholar 

  9. Spinnato P, Bazzocchi A, Brioli A et al (2012) Contrast enhanced MRI and 18F-FDG PET-CT in the assessment of multiple myeloma: a comparison of results in different phases of the disease. Eur J Radiol 81:4013–4018

    Article  CAS  PubMed  Google Scholar 

  10. Zamagni E, Nanni C, Patriarca F et al (2007) A prospective comparison of 18F-fluorodeoxyglucose positron emission tomography-computed tomography, magnetic resonance imaging and whole-body planar radiographs in the assessment of bone disease in newly diagnosed multiple myeloma. Haematologica 92:50–55

    Article  PubMed  Google Scholar 

  11. Dimitrakopoulou-Srauss A, Hoffmann M, Bergner R et al (2009) Prediction of progression-free survival in patients with multiple myeloma following anthracycline-based chemotherapy based on dynamic FDG-PET. Clin Nucl Med 34:576–584

    Article  Google Scholar 

  12. Fonti R, Larobina M, Del Vecchio S et al (2012) Metabolic tumor volume assessed by 18F-FDG PET/CT for the prediction of outcome in patients with multiple myeloma. J Nucl Med 53:1829–1835

    Article  CAS  PubMed  Google Scholar 

  13. Bartel TB, Haessler J, Brown TL et al (2009) F18-fluorodeoxyglucose positron emission tomography in the context of other imaging techniques and prognostic factors in multiple myeloma. Blood 114:2068–2076

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Lin C, Ho CL, Ng SH et al (2014) (11)C-Acetate as a new biomarker for PET/CT in patients with multiple myeloma: initial staging and postinduction response assessment. Eur J Nucl Med Mol Imaging 41:41–49

    Article  CAS  PubMed  Google Scholar 

  15. Nakamoto Y, Kurihara K, Nishizawa M et al (2013) Clinical value of 11C-methionine PET/CT in patients with plasma cell malignancy: comparison with 18F-FDG PET/CT. Eur J Nucl Med Mol Imaging 40:708–715

    Article  CAS  PubMed  Google Scholar 

  16. Sachpekidis C, Goldschmidt H, Hose D et al (2014) PET/CT studies of multiple myeloma using 18F-FDG und 18F-NaF: comparison of distribution patterns and tracers’pharmacokinetics. Eur J Nucl Med Mol Imaging, 2014 Feb. 22

  17. Dimitrakopoulou-Strauss A, Pan L, Strauss LG (2012) Quantitative approaches of dynamic FDG-PET and PET/CT studies (dPET/CT) for the evaluation of oncological patients. Cancer Imaging 12:283–289

    Article  PubMed  Google Scholar 

  18. Dimitrakopoulou-Strauss A, Strauss LG, Schwarzbach M et al (2001) Dynamic PET 18F-FDG studies in patients with primary and recurrent soft-tissue sarcomas: impact on diagnosis and correlation with grading. J Nucl Med 42:713–720

    CAS  PubMed  Google Scholar 

  19. Strauss LG, Koczan D, Klippel S et al (2008) Impact of angiogenesis-related gene expression on the tracer kinetics of 18F-FDG in colorectal tumors. J Nucl Med 49:1238–1244

    Article  CAS  PubMed  Google Scholar 

  20. Dimitrakopoulou-Strauss A, Hoffmann M, Bergner R et al (2007) Prediction of short-term survival in patients with advanced nonsmall cell lung cancer following chemotherapy based on 2-deoxy-2-(F-18)-fluoro-D-glucose positron emission tomography: a feasibility study. Mol Imaging Biol 9:308–317

    Article  PubMed  Google Scholar 

  21. Dimitrakopoulou-Strauss A, Hohenberger P, Pan L et al (2012) Dynamic PET (dPET) with FDG in patients with unresectable aggressive fibromatosis: regression-based parametric images and correlation to the FDG kinetics based on a two-tissue compartment model. Clin Nucl Med 37:943–948

    Article  PubMed  Google Scholar 

  22. Apostolopoulos DJ, Dimitrakopoulou-Strauss A, Hohenberger P et al (2011) Parametric images via dynamic 18F-deoxyglucose positron emission tomographic data acquisition in predicting midterm outcome of liver metastases secondary to gastrointestinal stromal tumours. Eur J Nucl Med Mol Imaging 38:1212–1234

    Article  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. A. Dimitrakopoulou-Strauss gibt an, dass kein Interessenkonflikt besteht. Alle angewandten Verfahren stehen im Einklang mit den ethischen Normen der verantwortlichen Kommission für Forschung am Menschen (institutionell und national) und mit der Deklaration von Helsinki von 1975 in der revidierten Fassung von 2008. Alle Patienten wurden erst nach erfolgter Aufklärung und Einwilligung in die Studie eingeschlossen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Dimitrakopoulou-Strauss.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dimitrakopoulou-Strauss, A. PET-CT in der nuklearmedizinischen Diagnostik des multiplen Myeloms. Radiologe 54, 564–571 (2014). https://doi.org/10.1007/s00117-013-2629-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-013-2629-8

Schlüsselwörter

Keywords

Navigation