Skip to main content
Log in

Radiologische Diagnostik des multiplen Myeloms

Radiological diagnostics of multiple myeloma

  • Leitthema
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Klinisches/methodisches Problem

Die Aufgabe der bildgebenden Diagnostik beim multiplen Myelom (MM) ist die zuverlässige Erfassung der Tumorlast im Skelett sowie auch der extraskelettalen Manifestationen und der assoziierten Komplikationen (z. B. Wirbelkörperfrakturen, Frakturgefahr).

Radiologische Standardverfahren

Projektionsradiographie (Skelettstatus) zur Erfassung von Osteolysen, Osteoporose oder Frakturen.

Methodische Innovationen

Die Ganzkörper-CT stellt hochsensitiv die Osteolysen, die Ganzkörper-MRT das Ausmaß der Knochenmarkinfiltration dar. Die Positronenemissionstomographie(PET)-CT kann zusätzlich die aktiven Myelomläsionen detektieren und wichtige Informationen für den Therapieverlauf geben.

Leistungsfähigkeit

Nach den Ergebnissen mehrerer Studien sind die Schnittbildverfahren dem Röntgenskelettstatus überlegen. Die Ganzkörper-MRT ist sowohl für den Nachweis fokaler Läsionen als auch einer diffusen Infiltration signifikant sensitiver als die Ganzkörper-CT. Die PET-CT zeigt eine vergleichbare Sensitivität mit der Ganzkörper-MRT.

Bewertung

Aufgrund der höheren Sensitivität bei der Detektion von Myelomläsionen sollten die Ganzkörper-CT und die Ganzkörper-MRT die Projektionsradiographie ersetzen.

Empfehlung für die Praxis

Bei Verdacht auf ein MM sollte bei der initialen Diagnostik eine Ganzkörper-CT durchgeführt werden. Werden hier keine Herde gefunden, sollte, falls verfügbar, eine Ganzkörper(GK)-MRT oder zumindest eine MRT der Wirbelsäule und des Beckens durchgeführt werden. Falls eine GK-MRT in der initialen Diagnostik durchgeführt wurde, sollte bei fokalen Herden eine ergänzende Ganzkörper-CT erfolgen, um das Ausmaß der Osteolysen zu erfassen und das Frakturrisiko abzuschätzen. Bei der monoklonalen Gammopathie unklarer Signifikanz (MGUS), beim solitären und beim „smoldering“ Myelom sollte, falls verfügbar, die GK-MRT eingesetzt werden, da hiervon die Prognose und das Therapiekonzept bei vorhandenen Infiltraten betroffen sind.

Abstract

Clinical/methodical issue

Robust and reliable imaging methods are required to estimate the skeletal tumor load in multiple myeloma, as well as for the diagnosis of extraskeletal manifestations. Imaging also plays an essential role in the assessment of fracture risk and of vertebral fractures.

Standard radiological methods

The conventional skeletal survey has been the gold standard in the imaging of multiple myeloma for many years.

Methodical innovations

Other modalities which have been investigated and are in use are whole-body computed tomography (WBCT), 18F-fluorodeoxyglucose positron emission tomography computed tomography (FDG PET-CT) and whole-body magnetic resonance imaging (WBMRI). These techniques are able to depict both mineralized bone and the bone marrow with a high sensitivity for myeloma lesions.

Performance

Several studies have shown that cross-sectional imaging is superior to the skeletal survey in the detection of myeloma lesions and WBMRI has been shown to be significantly more sensitive than WBCT for the detection of focal myeloma lesions as well as for diffuse infiltration. The FDG PET-CT technique has a sensitivity comparable to WBMRI.

Achievements

Due to the higher sensitivity in the detection of myeloma lesions WBCT and WBMRI should replace the skeletal survey.

Practical recommendations

A WBCT should be performed if there is suspicion of multiple myeloma. If no focal lesions are found WBMRI or at least MRI of the spine and pelvis should be additionally performed if available. If WBMRI has been initially performed and focal lesions are present, an additional WBCT may be performed to assess the extent of bone destruction and fracture risk. In cases of monoclonal gammopathy of undetermined significance (MGUS), solitary and smoldering myeloma, a WBMRI, if available, should be performed in addition to WBCT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Frühwald F, Tscholakoff D, Schwaighofer B et al (1988) Magnetic resonance imaging of the lower vertebral column in patients with multiple myeloma. Invest Radiol 23:193

    Article  Google Scholar 

  2. Linden A, Gückel C, Widder R et al (1992) Kernspintomographie beim Plasmozytom. Fortschr Röntgenstr 156:83

    Article  CAS  Google Scholar 

  3. Ludwig H, Tscholakoff D, Neuhold A et al (1987) Magnetic resonance imaging of the spine in multiple myeloma. Lancet 15:364

    Article  Google Scholar 

  4. Baur A, Stäbler A, Bartl R et al (1996) Infiltrationsmuster des Plasmozytoms in der Magnetresonanztomographie. Fortschr Röntgenstr 164:457

    Article  CAS  Google Scholar 

  5. Baur A, Stäbler A, Steinborn M et al (1998) Magnetresonanztomographie beim Plasmozytom: Wertigkeit verschiedener Sequenzen bei diffuser und fokaler Infiltrationsform. Fortschr Röntgenstr 168:323–329

    Article  CAS  Google Scholar 

  6. Baur-Melnyk A, Buhmann S, Dürr HR et al (2005) Role of MRI for the diagnosis and prognosis of multiple myeloma. Eur J Radiol 56–64

  7. Pettersson H, Gillespy T, Hamlin DJ et al (1987) Primary musculoskeletal tumors: examination with MR imaging compared with conventional modalities. Radiology 164:237

    CAS  PubMed  Google Scholar 

  8. Smoker WRK, Goderski JC, Knutzon RK et al (1987) The role of MR imaging in evaluating metastatic spinal disease. Am J Radiol 149:1241

    CAS  Google Scholar 

  9. Baur A, Stäbler A, Bartl R et al (1997) MRI gadolinium enhancement of bone marrow: age related changes in normals and in diffuse neoplastic infiltration. Skeletal Radiol 26:414

    Article  CAS  PubMed  Google Scholar 

  10. Mariette X, Zagdanski AM, Guermazi A et al (1999) Prognostic value of vertebral lesions detected by MRI in patients with stage I multiple myeloma. Br J Haematol 104:723–729

    Article  CAS  PubMed  Google Scholar 

  11. Vande Berg B, Lecouvet F, Michaux L et al (1996) Stage I multiple myeloma: value of MRI of the bone marrow in the determination of prognosis. Radiology 201:243–246

    Google Scholar 

  12. Dimopoulos MA, Moulopoulos A, Smith TL et al (1993) Risk of disease progression in asymptomatic multiple myeloma. Am J Med 94:57–61

    Article  CAS  PubMed  Google Scholar 

  13. Moulopoulos LA, Dimopoulos MA, Smith TL et al (1995) Prognostic significance of magnetic resonance imaging in patients with asymptomatic multiple myeloma. J Clin Oncol 13:251–256

    CAS  PubMed  Google Scholar 

  14. Stäbler A, Baur A, Bartl R et al (1996) Contrast enhancement and quantitative signal analysis in MR imaging of multiple myeloma. AJR Am J Radiol 167:1029

    Google Scholar 

  15. Baur-Melnyk A, Buhmann S, Becker et al (2008) Whole body MRI versus Whole body MDCT for the staging of patients with multiple myeloma. AJR Am J Roentgenol 190:1097–1104

    Article  PubMed  Google Scholar 

  16. Durie BGM, Salmon SM et al (2003) Myeloma management guidelines: a consensus report from the Scientific Advisors of the International Myeloma Foundation. Hematol J 4:379–398

    Article  PubMed  Google Scholar 

  17. Ghanem N, Lohrmann C, Engelhardt M et al (2006) Whole-body MRI in the detection of bone marrow infiltration in patients with plasma cell neoplasms in comparison to the radiological skeletal survey. Eur Radiol 16:1005–1014

    Article  PubMed  Google Scholar 

  18. Dinter DJ, Neff WK, Klaus J et al (2009) Comparison of whole-body MR imaging and conventional X-ray examinations in patients with multiple myeloma and implications for therapy. Ann Hematol 88:457–464

    Article  PubMed  Google Scholar 

  19. Gleeson TG, Moriarty J, Shortt CP et al (2009) Accuracy of whole-body low-lose multidetector CT (WBLDCT) versus skeletal survey in the detection of myelomatous lesions, and correlation of disease distribution with whole-body MRI (WBMRI). Skeletal Radiol 38:225–236

    Article  CAS  PubMed  Google Scholar 

  20. Bäuerle T, Hillengass J, Fechtner K et al (2009) Multiple myeloma and monoclonal gammopathy of undetermined significance: importance of whole-body versus spinal MR imaging. Radiology 252:477–485

    Article  PubMed  Google Scholar 

  21. Hillengass J, Fechtner K, Weber MA et al (2010) Prognostic significance of focal lesions in whole-body magnetic resonance imaging in patients with asymptomatic multiple myeloma. J Clin Oncol 28:1606–1610

    Article  PubMed  Google Scholar 

  22. Dimopoulos M, Kyle R, Fermand JP et al (2011) Consensus recommendations for standard investigative workup: report oft he International Myeloma Workshop Consensus Panel 3. Blood 117:4701–4705

    Article  CAS  PubMed  Google Scholar 

  23. Dimopoulos M, Terpos E, Comenzo RL et al (2009) International myeloma working group consensus statement and guidelines regarding the current role of imaging techniques in the diagnosis and monitoring of multiple myeloma. Leukemia 23:1545–1556

    Article  CAS  PubMed  Google Scholar 

  24. Schreiman JS, McLeod RA, Kyle RA et al (1985) Multiple myeloma: evaluation by CT. Radiology 154:483–486

    CAS  PubMed  Google Scholar 

  25. Mahnken AH, Wildberger JE, Gehbauer G et al (2002) Multidetector CT of the spine in multiple myeloma: comparison with MR imaging and radiography. AJR Am J Roentgenol 178:1429–1436

    Article  CAS  PubMed  Google Scholar 

  26. Merz M et al (2014) Predictive value of longitudinal whole-body magnetic resonance imaging in patients with smoldering multiple myeloma. Leukemia. doi:10.1038/leu.2014.75. (Epub ahead of print)

  27. Hillengass J et al (2014) Prognostic significance of whole-body MRI in patients with monoclonal gammopathy of undetermined significance. Leukemia 28:174–178

    Article  CAS  PubMed  Google Scholar 

  28. Zamagni E et al (2011) Prognostic relevance of 18-F FDG PET/CT in newly diagnosed multiple myeloma patients treated with up-front autologous transplantation. Blood 118:5989–5995

    Article  CAS  PubMed  Google Scholar 

  29. Agarwal A et al (2013) Evolving role of FDG PET/CT in multiple myeloma imaging and management. AJR Am J Roentgenol 2004):884–890

    Article  Google Scholar 

  30. Fonti R, Salvatore B, Quarantelli M et al (2008) 18F-FDG PET/CT, 99mTc-MIBI, and MRI in evaluation of patients with multiple myeloma. J Nucl Med 49:195–200

    Article  PubMed  Google Scholar 

  31. Fonti R et al (2012) Metabolic tumor volume assessed by 18F-FDG PET/CT for the prediction of outcome in patients with multiple myeloma. J Nucl Med 53:1829–1835

    Article  CAS  PubMed  Google Scholar 

  32. Usmani SZ, Mitchell A, Waheed S et al (2013) Prognostic implications of serial 18-fluoro-deoxyglucose emission tomography in multiple myeloma treated with totaltherapy 3. Blood 121:1819–1823

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Nanni C, Zamagni E, Celli M et al (2013) The value of 18F-FDG PET/CT after autologous stem cell transplantation (ASCT) in patients affected by multiple myeloma (MM): experience with 77 patients. Clin Nucl Med 38:e74–e79

    Article  PubMed  Google Scholar 

  34. Caers J, Withofs N, Hillengass J et al (2013) The role of positron emission tomography-computed tomography and magnetic resonance imaging in diagnosis and follow up of multiple myeloma. Haematologica 99:629–637

    Article  Google Scholar 

  35. Schirrmeister H, Bommer M, Buck AK et al (2002) Initial results in the assessment of multiple myeloma using 18F-FDG PET. Eur J Nucl Med Mol Imaging 29:361–366

    Article  CAS  PubMed  Google Scholar 

  36. Bredella MA, Steinbach L, Caputo G et al (2005) Value of FDG PET in the assessment of patients with multiple myeloma. Am J Roentgenol 184:1199–1204

    Article  Google Scholar 

  37. Baur A, Stabler A, Nagel D et al (2002a) Magnetic resonance imaging as a supplement for the clinical staging system of Durie and Salmon? Cancer 95:1334–1345

    Article  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. A. Baur-Melnyk, M. D’Anastasi, S. Grandl, M.F. Reiser geben an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Baur-Melnyk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Anastasi, M., Grandl, S., Reiser, M. et al. Radiologische Diagnostik des multiplen Myeloms. Radiologe 54, 556–563 (2014). https://doi.org/10.1007/s00117-013-2628-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-013-2628-9

Schlüsselwörter

Keywords

Navigation