Skip to main content
Log in

Interaktion zwischen Myelomzellen und Knochengewebe

Interaction between myeloma cells and bone tissue

  • Leitthema
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Das multiple Myelom ist diejenige maligne Erkrankung, die am häufigsten zu Knochensubstanzdefekten führt. Bei ca. 80 % der Patienten treten im Verlauf Osteolysen, generalisierte osteoporotische Veränderungen oder Frakturen auf. Pathologische Frakturen erleiden 43 % der Patienten, am häufigsten der Wirbelkörper, gefolgt von Frakturen der langen Röhrenknochen.

Material und Methoden

Die in den beschriebenen Arbeiten eingesetzten Methoden umfassen u. a. Genexpressionsanalysen, „enzyme-linked immunosorbent assays“ und radiologische Verfahren.

Ergebnisse und Diskussion

Knochensubstanzdefekte stellen auf dreifache Weise ein therapeutisches Problem dar: 1) per se durch die assoziierte Morbidität und Mortalität und die einhergehende Einschränkung der Lebensqualität, 2) als Überlebensraum für Myelomzellen nach primär erfolgreicher Therapie und konsekutiv notwendiger erneuter chemotherapeutischer Behandlung; 3) ist in analoger Weise bei Patienten mit asymptomatischem Myelom das Auftreten einer osteolytischen Läsion der häufigste Grund für eine Therapieeinleitung -zur Vermeidung einer myelombedingten Fraktur. Maligne Plasmazellen weisen dabei eine Vielzahl chromosomaler Aberrationen und Veränderungen ihres Genexpressionsprofils auf, die mit der Fähigkeit zur aberranten Produktion von Überlebens-, Proliferations-, proangiogenen und knochenstoffwechselbeeinflussenden Faktoren einhergehen bzw. deren Produktion in der Mikroumgebung induzieren. Dies führt zu einer Entkopplung des Knochenstoffwechsels im Sinne einer vermehrten Anzahl und Aktivität von Osteoklasten, der Knochenaufbau durch Osteoblasten sistiert fast vollständig. Therapeutische Ansätze, systemisch wie lokal, zielen dementsprechend auf eine Stimulierung der osteoblastären und Inhibition der osteoklastären Funktion.

Abstract

Background

Multiple myeloma is the malignant disease which most frequently leads to bone lesions. Approximately 80 % of myeloma patients develop osteoporosis, lytic bone lesions (osteolysis) or fractures during the course of the disease. Of these patients 43 % suffer pathological fractures most often of the vertebrae followed by fractures of the long bones.

Material and methods

The methods used in the described articles include, e.g. gene expression profiling, enzyme-linked immunosorbent assays and radiological techniques.

Results and discussion

Myeloma bone disease represents a threefold therapeutic problem: (i) per se because of the associated morbidity, mortality and the accompanying decrease of quality of life, (ii) as survival space for (residual) myeloma cells after primarily successful chemotherapy and subsequently necessary chemotherapeutic treatment, and (iii) the occurrence of bone lesions in asymptomatic patients is the most common cause for the initiation of treatment to avoid myeloma-induced fractures. Myeloma cells harbor a high median number of chromosomal aberrations and multiple changes in gene expression compared to normal bone marrow plasma cells leading to the aberrant production of survival, proliferation, pro-angiogenic and bone turnover influencing factors or the induction of those factors in the bone marrow microenvironment. This causes an imbalanced bone turnover in the sense of an increased number and activity of osteoclasts while bone formation by osteoblasts is almost completely suspended. Therapeutic approaches, systemically and locally therefore aim at stimulation of osteoblasts and inhibition of bone resorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Abe M, Hiura K, Wilde J et al (2002) Role for macrophage inflammatory protein (MIP)-1α and MIP-1β in the development of osteolytic lesions in multiple myeloma. Blood 100:2195–2202

    CAS  PubMed  Google Scholar 

  2. Abe M, Hiura K, Wilde J et al (2004) Osteoclasts enhance myeloma cell growth and survival via cell-cell contact: a vicious cycle between bone destruction and myeloma expansion. Blood 104:2484–2491

    Article  CAS  PubMed  Google Scholar 

  3. Andersen TL, Sondergaard TE, Skorzynska KE et al (2009) A physical mechanism for coupling bone resorption and formation in adult human bone. Am J Pathol 174:239–247

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Bataille R, Chappard D, Marcelli C et al (1991) Recruitment of new osteoblasts and osteoclasts is the earliest critical event in the pathogenesis of human multiple myeloma. J Clin Invest 88:62–66

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Epstein J, Walker R (2006) Myeloma and bone disease: „the dangerous tango“. Clin Adv Hematol Oncol 4:300–306

    PubMed  Google Scholar 

  6. Giuliani N, Bataille R, Mancini C et al (2001) Myeloma cells induce imbalance in the osteoprotegerin/osteoprotegerin ligand system in the human bone marrow environment. Blood 98:3527–3533

    Article  CAS  PubMed  Google Scholar 

  7. Hillengass J, Fechtner K, Weber M-A et al (2010) Prognostic significance of focal lesions in whole-body magnetic resonance imaging in patients with asymptomatic multiple myeloma. J Clin Oncol 28:1606–1610

    Article  PubMed  Google Scholar 

  8. Hillengass J, Weber MA, Kilk K et al (2014) Prognostic significance of whole-body MRI in patients with monoclonal gammopathy of undetermined significance. Leukemia 28:174–178

    Article  CAS  PubMed  Google Scholar 

  9. Hose D, Moreaux J, Meissner T et al (2009) Induction of angiogenesis by normal and malignant plasma cells. Blood 114:128–143

    Article  CAS  PubMed  Google Scholar 

  10. Hose D, Reme T, Hielscher T et al (2011) Proliferation is a central independent prognostic factor and target for personalized and risk adapted treatment in multiple myeloma. Haematologica 96:87–95

    Article  PubMed Central  PubMed  Google Scholar 

  11. Hose D, Rème T, Meissner T et al (2009) Inhibition of aurora kinases for tailored risk-adapted treatment of multiple myeloma. Blood 113:4331–4340

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Klein B, Seckinger A, Moehler T et al (2011) Molecular pathogenesis of multiple myeloma: chromosomal aberrations, changes in gene expression, cytokine networks, and the bone marrow microenvironment. Recent Results Cancer Res 183:39–86

    Article  PubMed  Google Scholar 

  13. Kyle RA, Gertz MA, Witzig TE et al (2003) Review of 1027 patients with newly diagnosed multiple myeloma. Mayo Clin Proc 78:21–33

    Article  PubMed  Google Scholar 

  14. Melton LJ, Kyle RA, Achenbach SJ et al (2005) Fracture risk with multiple myeloma: a population-based study. J Bone Miner Res 20:487–493

    Article  PubMed  Google Scholar 

  15. Menaa C, Devlin RD, Reddy SV et al (1999) Annexin II increases osteoclast formation by stimulating the proliferation of osteoclast precursors in human marrow cultures. J Clin Invest 103:1605–1613

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Moester MJ, Papapoulos SE, Lowik CW et al (2010) Sclerostin: current knowledge and future perspectives. Calcif Tissue Int 87:99–107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Moreaux J, Hose D, Kassambara A et al (2011) Osteoclast-gene expression profiling reveals osteoclast-derived CCR2-chemokines promoting myeloma cell migration. Blood 117:1280–1290

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Moreaux J, Sprynski A-C, Dillon SR et al (2009) APRIL and TACI interact with syndecan-1 on the surface of multiple myeloma cells to form an essential survival loop. Eur J Haematol 83:119–129

    Article  CAS  PubMed  Google Scholar 

  19. Morgan GJ, Davies FE, Gregory WM et al (2010) First-line treatment with zoledronic acid as compared with clodronic acid in multiple myeloma (MRC Myeloma IX): a randomised controlled trial. Lancet 376:1989–1999

    Article  CAS  PubMed  Google Scholar 

  20. Neben K, Jauch A, Hielscher T et al (2013) Progression in smoldering myeloma is independently determined by the chromosomal abnormalities del(17p), t(4;14), Gain 1q, hyperdiploidy, and tumor load. J Clin Oncol 31:4325–4332

    Article  PubMed  Google Scholar 

  21. Niida S, Kaku M, Amano H et al (1999) Vascular endothelial growth factor can substitute for macrophage colony-stimulating factor in the support of osteoclastic bone resorption. J Exp Med 190:293–298

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Saad F, Lipton A, Cook R et al (2007) Pathologic fractures correlate with reduced survival in patients with malignant bone disease. Cancer 110:1860–1867

    Article  PubMed  Google Scholar 

  23. Seckinger A, Meißner T, Bertsch U et al (2013) Bone turnover in multiple myeloma: impact of bortezomib-based induction therapy, high-dose melphalan, and lenalidomide consolidation on osteoblast and osteoclast function within the GMMG-MM5 Trial. ASH Annual Meeting Abstracts 1863

  24. Seckinger A, Meißner T, Moreaux J et al (2012) Clinical and prognostic role of annexin A2 in multiple myeloma. Blood 120:1087–1094

    Article  CAS  PubMed  Google Scholar 

  25. Seckinger A, Meissner T, Moreaux J et al (2009) Bone morphogenic protein 6: a member of a novel class of prognostic factors expressed by normal and malignant plasma cells inhibiting proliferation and angiogenesis. Oncogene 28:3866–3879

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Shipman CM, Croucher PI (2003) Osteoprotegerin is a soluble decoy receptor for tumor necrosis factor-related apoptosis-inducing ligand/Apo2 ligand and can function as a paracrine survival factor for human myeloma cells. Cancer Res 63:912–916

    CAS  PubMed  Google Scholar 

  27. Sprynski AC, Hose D, Caillot L et al (2009) The role of IGF-1 as a major growth factor for myeloma cell lines and the prognostic relevance of the expression of its receptor. Blood 113:4614–4626

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Standal T, Abildgaard N, Fagerli U-M et al (2007) HGF inhibits BMP-induced osteoblastogenesis: possible implications for the bone disease of multiple myeloma. Blood 109:3024–3030

    CAS  PubMed  Google Scholar 

  29. Sugatani T, Alvarez UM, Hruska KA (2003) Activin A stimulates IkappaB-alpha/NFkappaB and RANK expression for osteoclast differentiation, but not AKT survival pathway in osteoclast precursors. J Cell Biochem 90:59–67

    Article  CAS  PubMed  Google Scholar 

  30. Tai Y-T, Podar K, Catley L et al (2003) Insulin-like growth factor-1 induces adhesion and migration in human multiple myeloma cells via activation of beta1-integrin and phosphatidylinositol 3’-kinase/AKT signaling. Cancer Res 63:5850–5858

    CAS  PubMed  Google Scholar 

  31. Tanaka Y, Abe M, Hiasa M et al (2007) Myeloma cell-osteoclast interaction enhances angiogenesis together with bone resorption: a role for vascular endothelial cell growth factor and osteopontin. Clin Cancer Res 13:816–823

    Article  CAS  PubMed  Google Scholar 

  32. Terpos E, Berenson J, Raje N et al (2014) Management of bone disease in multiple myeloma. Expert Rev Hematol 7:113–125

    Article  CAS  PubMed  Google Scholar 

  33. Terpos E, Christoulas D, Kastritis E et al (2014) The combination of lenalidomide and dexamethasone reduces bone resorption in responding patients with relapsed/refractory multiple myeloma but has no effect on bone formation: final results on 205 patients of the Greek myeloma study group. Am J Hematol 89:34–40

    Article  CAS  PubMed  Google Scholar 

  34. Terpos E, Christoulas D, Katodritou E et al (2011) Elevated circulating sclerostin correlates with advanced disease features and abnormal bone remodeling in symptomatic myeloma; reduction post-bortezomib monotherapy. Int J Cancer 131:1466–1471

    Article  PubMed  Google Scholar 

  35. Terpos E, Kastritis E, Christoulas D et al (2012) Circulating activin-A is elevated in patients with advanced multiple myeloma and correlates with extensive bone involvement and inferior survival; no alterations post-lenalidomide and dexamethasone therapy. Ann Oncol 23:2681–2686

    Article  CAS  PubMed  Google Scholar 

  36. Terpos E, Morgan G, Dimopoulos MA et al (2013) International Myeloma Working Group recommendations for the treatment of multiple myeloma-related bone disease. J Clin Oncol 31:2347–2357

    Article  CAS  PubMed  Google Scholar 

  37. Terpos E, Szydlo R, Apperley JF et al (2003) Soluble receptor activator of nuclear factor κB ligand – osteoprotegerin ratio predicts survival in multiple myeloma: proposal for a novel prognostic index. Blood 102:1064–1069

    Article  CAS  PubMed  Google Scholar 

  38. Tian E, Zhan F, Walker R et al (2003) The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med 349:2483–2494

    Article  CAS  PubMed  Google Scholar 

  39. Vallet S, Mukherjee S, Vaghela N et al (2010) Activin A promotes multiple myeloma-induced osteolysis and is a promising target for myeloma bone disease. Proc Natl Acad Sci U S A 107:5124–5129

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Moehler T, Goldschmidt H (Hrsg) (2011) Multiple myeloma, 39 recent results in cancer research 183, Kap 3. Springer, Berlin Heidelberg New York, S 61. doi:10.1007/978-3-540-85772-3_3

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. A. Seckinger und D. Hose geben an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Seckinger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seckinger, A., Hose, D. Interaktion zwischen Myelomzellen und Knochengewebe. Radiologe 54, 545–550 (2014). https://doi.org/10.1007/s00117-013-2626-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-013-2626-y

Schlüsselwörter

Keywords

Navigation