Skip to main content
Log in

Funktionelle Neuroanatomie: Sensomotorisches System

Functional neuroanatomy: sensorimotor system

  • Leitthema
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Der sensomotorische Informationsfluss im Zentralnervensystem (ZNS) kann in 3 Schritte gegliedert werden: Wahrnehmung, Verarbeitung und Reaktion. Umweltreize werden über Rezeptoren in das ZNS geleitet. Die im somatosensiblen Kortex ankommenden Reize werden über eine komplexe Interaktion zwischen sensorischem und motorischem Kortex verarbeitet. Die motorische Reaktion auf den Umweltreiz wird dann vom Motorkortex über Pyramidenbahn, Rückenmarksbahnen und motorische Nerven an den entsprechenden Muskel weitergeleitet.

Mit der funktionellen MRT (fMRT) ist es möglich, somatosensible und motorische Aktivierung in den verschiedenen beteiligten Hirngebieten zu untersuchen. Klinisch wird diese Information genutzt, um die räumliche Lagebeziehung zwischen Hirntumoren und funktionell bedeutsamen Hirngebieten zu bestimmen und so ein individuell optimiertes therapeutisches Vorgehen zu ermöglichen, mit dem Ziel einer möglichst radikalen Tumorentfernung unter Erhalt motorischer und somatosensibler Funktionen. Weiter ist es möglich, pathologische Veränderungen in der Hirnaktivierung zu erfassen. In dieser Arbeit werden die funktionellen somatosensorischen und motorischen Systeme beschrieben und ein Einblick in das Potenzial der fMRT gegeben.

Abstract

The sensorimotor flow of information can be divided in three steps: perception, processing and reaction. Environmental impulses are conducted through receptors to the central nervous system (CNS). The impulses arriving in the somatosensory cortex are processed through complex interactions between sensory and motor areas. The motor action in response to the environmental changes is transferred from the motor cortex via the pyramidal tract, spinal tracts and motor neurons to the respective muscles. With functional magnetic resonance imaging (fMRI) it is possible to assess somatosensory and motor activation in the different cortical areas involved. Clinically, this information is used to assess the local relationship between brain tumors and functionally important areas. This is important to ensure an optimal individual therapeutic approach with the aim of an as radical as possible tumor resection with preservation of the motor and somatosensory functions. Furthermore, fMRI enables the evaluation of pathological changes of cerebral activation. This review describes the functional somatosensory and motor systems and gives an insight into the potential of fMRI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Bähr M, Frotscher M (2003) Duu’s neurologisch-topische Diagnostic, 8. Aufl. Thieme, Stuttgart

  2. Bick AS, Mayer A, Levin N (2012) From research to clinical practice: implementation of functional magnetic imaging and white matter tractography in the clinical environment. J Neurol Sci 312:158–165

    Article  PubMed  Google Scholar 

  3. Blatow M, Nennig E, Durst A et al (2007) fMRI reflects functional connectivity of human somatosensory cortex. NeuroImage 37:927–936

    Article  PubMed  Google Scholar 

  4. Blatow M, Reinhardt J, Riffel K et al (2011) Clinical functional MRI of sensorimotor cortex using passive motor and sensory stimulation at 3 Tesla. J Magn Reson Imaging 34:429–437

    Article  PubMed  Google Scholar 

  5. Bogomolny DL, Petrovich NM, Hou BL et al (2004) Functional MRI in the brain tumor patient. Top Magn Reson Imaging 15:325–335

    Article  PubMed  Google Scholar 

  6. Chee MW, Venkatraman V, Westphal C, Siong SC (2003) Comparison of block and event-related fMRI designs in evaluating the word-frequency effect. Hum Brain Mapp18:186–193

    Article  Google Scholar 

  7. Dimou S, Battisti RA, Hermens DF, Lagopoulos J (2012) A systematic review of functional magnetic resonance imaging and diffusion tensor imaging modalities used in presurgical planning of brain tumour resection. Neurosurg Rev 36(2):205–214

    Article  PubMed  Google Scholar 

  8. Fanghänel J, Pera F, Andehuber F, Nirsch R (2002) Waldeyer – Anatomie des Menschen, 17. Aufl. de Gruyter, Berlin

  9. Geyer S, Ledberg A, Schleicher A et al (1996) Two different areas within the primary motor cortex of man. Nature 382:805–807

    Article  PubMed  CAS  Google Scholar 

  10. Holodny AI, Shevzov-Zebrun N, Brennan N, Peck KK (2011) Motor and sensory mapping. Neurosurg Clin North Am 22:207–218

    Article  Google Scholar 

  11. Nolte J (2002) The human brain, 6th edn. Mosby, St. Louis

  12. Partovi S, Jacobi B, Rapps N et al (2012) Clinical standardized fMRI reveals altered language lateralization in patients with brain tumor. AJNR Am J Neuroradiol 33:2151–2157

    Article  PubMed  CAS  Google Scholar 

  13. Peck KK, Holodny AI (2007) fMRI clinical applications. In: Reiser MF, Semmler W, Hricak H (eds) Magnetic resonance tomography. Springer, Berlin Heidelberg New York, pp 1308–1331

  14. Ritter P, Moosmann M, Villringer A (2009) Rolandic alpha and beta EEG rhythms‘ strengths are inversely related to fMRI-BOLD signal in primary somatosensory and motor cortex. Hum Brain Mapp 30:1168–1187

    Article  PubMed  Google Scholar 

  15. Stippich C, Hofmann R, Kapfer D et al (1999) Somatotopic mapping of the human primary somatosensory cortex by fully automated tactile stimulation using functional magnetic resonance imaging. Neurosci Lett 277:25–28

    Article  PubMed  CAS  Google Scholar 

  16. Stippich C, Kapfer D, Hempel E et al (2000) Robust localization of the contralateral precentral gyrus in hemiparetic patients using the unimpaired ipsilateral hand: a clinical functional magnetic resonance imaging protocol. Neurosci Lett 285:155–159

    Article  PubMed  CAS  Google Scholar 

  17. Stippich C, Ochmann H, Sartor K (2002) Somatotopic mapping of the human primary sensorimotor cortex during motor imagery and motor execution by functional magnetic resonance imaging (fMRI). Neurosci Lett 331:50–54

    Article  PubMed  CAS  Google Scholar 

  18. Stippich C, Kress B, Ochmann H et al (2003) Preoperative functional magnetic resonance tomography (FMRI) in patients with rolandic brain tumors: indication, investigation strategy, possibilities and limitations of clinical applications. Rofo 175:1042–1050

    Article  PubMed  CAS  Google Scholar 

  19. Stippich C (2005) Funktionelle Magnetresonanztomographie: Grundlagen und klinische Anwendung. Radiologie up2date 4:317–332

    Article  Google Scholar 

  20. Stippich C, Romanowski A, Nennig E et al (2005) Time-efficient localization of the human secondary somatosensory cortex by functional magnetic resonance imaging. Neurosci Lett 381:264–268

    Article  PubMed  CAS  Google Scholar 

  21. Stippich C, Rapps N, Dreyhaupt J et al (2007) Localizing and lateralizing language in patients with brain tumors: feasibility of routine preoperative functional MR imaging in 81 consecutive patients. Radiology 243:828–836

    Article  PubMed  Google Scholar 

  22. Stippich C, Blatow M, Durst A et al (2007) Global activation of primary motor cortex during voluntary movements in man. Neuroimage 34:1227–1237

    Article  PubMed  Google Scholar 

  23. Stippich C (2007) Clinical functional MRI, 1st edn. Springer, Berlin Heidelberg New York

  24. Thulborn KR, Carpenter PA, Just MA (1999) Plasticity of language-related brain function during recovery from stroke. Stroke 30:749–754

    Article  PubMed  CAS  Google Scholar 

  25. Tozakidou M, Wenz H, Reinhardt J et al (2013) Primary motor cortex activation and lateralization in patients with tumors of the central nervous system. Neuroimage (Amst) 2:221–228

    Google Scholar 

  26. Tuntiyatorn L, Wuttiplakorn L, Laohawiriyakamol K (2011) Plasticity of the motor cortex in patients with brain tumors and arteriovenous malformations: a functional MR study. J Med Assoc Thai 94:1134–1140

    PubMed  Google Scholar 

  27. Weiller C, Isensee C, Rijntjes M et al (1995) Recovery from Wernicke’s aphasia: a positron emission tomographic study. Ann Neurol 37:723–732

    Article  PubMed  CAS  Google Scholar 

  28. Wengenroth M, Blatow M, Guenther J et al (2011) Diagnostic benefits of presurgical fMRI in patients with brain tumours in the primary sensorimotor cortex. Eur Radiol 21:1517–1525

    Article  PubMed  Google Scholar 

  29. Yousry TA, Schmid UD, Alkadhi H et al (1997) Localization of the motor hand area to a knob on the precentral gyrus. A new landmark. Brain 120:141–157

    Article  PubMed  Google Scholar 

  30. Zilles K, Rehkämper G (1998) Funktionelle Neuroanatomie, 3. Aufl. Springer, Berlin Heidelberg New York

  31. Lewine JD (1995) Introduction to functional neuroimaging: functional neuroanatomy. In: Orrison WW Jr, Lewine JD, Sanders JA, Hartshorne MF (eds) Functional brain imaging. Mosby-Year Book, St. Louis, p 83

  32. Penfield W, Rasmussen T (1937) The cerebral cortex of man. Macmillan, New York

Download references

Interessenkonflikt

Die korrespondierende Autorin gibt für sich und ihre Koautoren an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Garcia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garcia, M., Stippich, C. Funktionelle Neuroanatomie: Sensomotorisches System. Radiologe 53, 584–591 (2013). https://doi.org/10.1007/s00117-013-2483-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-013-2483-8

Schlüsselwörter

Keywords

Navigation