Skip to main content
Log in

Anwendungen der Ultrahochfeld-MRT in der Neuroonkologie

Application of ultrahigh-field MRI in neuro-oncology

  • Leitthema
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Die Einführung der Hochfeld-MRT ermöglicht in der neuroonkologischen Bildgebung bereits im Bereich der T1- und T2-gewichteten Bildgebung eine bessere Darstellung der Tumorstrukturen. Insbesondere aber die suszeptibilitätsgewichtete Bildgebung (SWI) und die Time-of-flight(TOF)-Angiographie profitieren in erhöhtem Maße von der hohen Feldstärke. Die durch die Hochfeldtechnologie mögliche Darstellung der Tumorgefäße in der MRT kann potenziell für das Monitoring antiangiogener Therapien genutzt werden. Zerebrale Metastasen können mit Hilfe der Hochfeldtechnologie potenziell früher entdeckt werden. Weiterhin ermöglicht die Hochfeldtechnologie die Anwendung neuer Techniken wie beispielsweise der Natriumbildgebung, welche einen weiteren Erkenntnisgewinn im Bereich der Tumorpathophysiologie erwarten lassen.

Abstract

The introduction of high-field magnetic resonance imaging (MRI) into neuro-oncological imaging allows improved visualization of tumor structures even in the field of T1 and T2-weighted imaging. Susceptibility-weighted imaging (SWI) and time of flight (TOF) angiography in particular greatly benefit from the high field strength. The visualization of tumor vasculature in MRI, which was made possible by high-field technology can potentially be applied to monitoring antiangiogenic therapy. Cerebral metastases can potentially be discovered earlier using high-field technology. Furthermore, high-field technology permits the use of new technologies, such as sodium imaging, which is expected to provide new information in the field of tumor pathophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Rees J (2003) Advances in magnetic resonance imaging of brain tumours. Curr Opin Neurol 16(6):643–650

    Article  PubMed  Google Scholar 

  2. Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359(5):492–507

    Article  PubMed  CAS  Google Scholar 

  3. Lupo JM et al (2011) Advances in ultra-high field MRI for the clinical management of patients with brain tumors. Curr Opin Neurol 24(6):605–615

    Article  PubMed  Google Scholar 

  4. Reichenbach JR, Haacke EM (2001) High-resolution BOLD venographic imaging: a window into brain function. NMR Biomed 14(7–8):453–467

    Google Scholar 

  5. Kim HS et al (2009) Added value and diagnostic performance of intratumoral susceptibility signals in the differential diagnosis of solitary enhancing brain lesions: preliminary study. AJNR Am J Neuroradiol 30(8):1574–1579

    Article  PubMed  CAS  Google Scholar 

  6. Radbruch A et al (2012) Differentiation of brain metastases by percentagewise quantification of intratumoral-susceptibility-signals at 3 Tesla. Eur J Radiol, in press

  7. Radbruch A et al (2012) Differentiation of glioblastoma and primary CNS lymphomas using susceptibility weighted imaging. Eur J Radiol, in press

  8. Park MJ et al (2009) Semiquantitative assessment of intratumoral susceptibility signals using non-contrast-enhanced high-field high-resolution susceptibility-weighted imaging in patients with gliomas: comparison with MR perfusion imaging. AJNR Am J Neuroradiol 30(7):1402–1408

    Article  PubMed  CAS  Google Scholar 

  9. Di Leva A et al (2013) Three-dimensional susceptibility-weighted imaging at 7 T using fractal-based quantitative analysis to grade gliomas. Neuroradiology 55(1):35–40

    Article  Google Scholar 

  10. Monninghoff C et al (2010) Imaging of brain metastases of bronchial carcinomas with 7 T MRI – initial results. Rofo 182(9):764–772

    Article  PubMed  CAS  Google Scholar 

  11. Lupo JM et al (2012) 7 Tesla susceptibility-weighted imaging to assess the effects of radiotherapy on normal-appearing brain in patients with glioma. Int J Radiat Oncol Biol Phys 82(3):e493–e500

    Article  PubMed  Google Scholar 

  12. Nowinski WL et al (2013) Comparison of magnetic resonance angiography scans on 1.5, 3, and 7 Tesla units: a quantitative study of 3-dimensional cerebrovasculature. J Neuroimaging 23(1):86–95

    Article  PubMed  Google Scholar 

  13. Friedman HS et al (2009) Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol 27(28):4733–4740

    Article  PubMed  CAS  Google Scholar 

  14. Kreisl TN et al (2009) Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J Clin Oncol 27(5):740–745

    Article  PubMed  CAS  Google Scholar 

  15. Vredenburgh JJ et al (2007) Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin Cancer Res 13(4):1253–1259

    Article  PubMed  CAS  Google Scholar 

  16. Plate KH et al (1992) Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 359(6398):845–848

    Article  PubMed  CAS  Google Scholar 

  17. Grabner G et al (2012) Longitudinal brain imaging of five malignant glioma patients treated with bevacizumab using susceptibility-weighted magnetic resonance imaging at 7 T. Magn Reson Imaging 30(1):139–147

    Article  PubMed  CAS  Google Scholar 

  18. Di Leva A et al (2012) Fractal analysis of the susceptibility weighted imaging patterns in malignant brain tumors during antiangiogenic treatment: technical report on four cases serially imaged by 7 T magnetic resonance during a period of four weeks. World Neurosurg 77(5–6):785.e11–e21

  19. McKnight TR et al (2001) An automated technique for the quantitative assessment of 3D-MRSI data from patients with glioma. J Magn Reson Imaging 13(2):167–177

    Article  PubMed  CAS  Google Scholar 

  20. Mekle R et al (2009) MR spectroscopy of the human brain with enhanced signal intensity at ultrashort echo times on a clinical platform at 3 T and 7 T. Magn Reson Med 61(6):1279–1285

    Article  PubMed  CAS  Google Scholar 

  21. Srinivasan R et al (2010) Ex vivo MR spectroscopic measure differentiates tumor from treatment effects in GBM. Neuro Oncol 12(11):1152–1161

    Article  PubMed  Google Scholar 

  22. Nagel AM et al (2011) The potential of relaxation-weighted sodium magnetic resonance imaging as demonstrated on brain tumors. Invest Radiol 46(9):539–547

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt für sich und seinen Koautor an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Radbruch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radbruch, A., Schlemmer, HP. Anwendungen der Ultrahochfeld-MRT in der Neuroonkologie. Radiologe 53, 411–414 (2013). https://doi.org/10.1007/s00117-012-2347-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-012-2347-7

Schlüsselwörter

Keywords

Navigation