Skip to main content
Log in

Probleme und Chancen der Hochfeldmagnetresonanztomographie

Problems and chances of high field magnetic resonance imaging

  • Leitthema
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Klinisches/methodisches Problem

Die räumliche, zeitliche oder spektrale Auflösung der MRT ist heute vielfach nicht ausreichend, um Submillimeterläsionen zu detektieren oder um die Dynamik des Herzschlags darzustellen.

Radiologische Standardverfahren

Zur Zeit sind MR-Tomographen bei 1,5 oder 3 T die Standardgeräte für klinische Untersuchungen.

Methodische Innovationen

Der Einsatz ultrahoher Magnetfelder von 7 T verspricht durch die Erhöhung des Signal-zu-Rausch-Verhältnisses eine deutliche Verbesserung der räumlichen und/oder zeitlichen Auflösung sowie die Generierung neuer Kontraste.

Leistungsfähigkeit

Mit der 7-T-MRT ist es gelungen, MR-Aufnahmen des Hirns routinemäßig mit 0,3 mm Auflösung zu akquirieren. Die theoretisch erwartete Verbesserung des Signal-zu-Rausch-Verhältnisses wird aber auf Grund von B1-Inhomogenitäten und Kontrastvariationen oft nicht erreicht.

Bewertung

Mit Hilfe der 7-T-MRT kann eine deutliche Erhöhung der räumlichen Auflösung erzielt werden. Techniken wie die Time-of-flight(TOF)-MR-Angiographie und suszeptibilitätsgewichtete Methoden (z. B. die neurofunktionelle MRT) profitieren in verstärktem Maße von den hohen Feldern. Sendefeldinhomogenitäten sind immer noch eine große Herausforderung für die Ultrahochfeld(UHF)-MRT und stellen auch ein nur teilweise gelöstes Sicherheitsproblem dar.

Empfehlung für die Praxis

Die UHF-MRT ist z. Z. auf spezielle Anwendungsgebiete beschränkt, und der erwartete Gewinn muss oft gegen technische Komplikationen bei der Datenaufnahme und Bildinterpretation abgewogen werden.

Abstract

Clinical/methodical issue

The spatial, temporal and spectral resolution in magnetic resonance imaging (MRI) is in many cases currently not sufficient to detect submillimeter lesions or to image the dynamics of the beating heart.

Standard radiological methods

At present MRI systems at 1.5 T and 3 T are the standard units for clinical imaging.

Methodical innovations

The use of ultrahigh magnetic fields of 7 T and higher increases the signal-to-noise ratio, which holds promise for a significant improvement of the spatial and/or temporal resolution as well as for new contrast mechanisms.

Performance

With 7 T MRI, images of the brain have been acquired routinely with a spatial resolution of 0.3 mm. The theoretical improvement of the signal-to-noise ratio is often not fully realized due to B1 inhomogeneities and contrast variations.

Achievements

With MRI at 7 T a notable increase in spatial resolution can be achieved. Methods such as time-of-flight MR angiography and susceptibility-weighted imaging (e.g. neurofunctional MRI, fMRI) profit especially from the higher field strengths. Transmission field inhomogeneities are still a major challenge for ultrahigh field (UHF) MRI and are also a partially unsolved safety problem.

Practical recommendations

The use of UHF MRI is currently limited to special applications and the expected gain of the high field must be weighed against technical limitations in both image acquisition and interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Fuchs VR, Sox HC Jr (2001) Physicians‘ views of the relative importance of thirty medical innovations. Health Aff (Millwood) 20:30–42

    Google Scholar 

  2. International Electrotechnical Commission (IEC) (2010) Medical electrical equipment – Part 2–33: particular requirements for the safety of magnetic resonance equipment for medical diagnosis. Edition 3.0. 60601-2-33

  3. Norris DG (2003) High field human imaging. J Magn Reson Imaging 18:519–529

    Article  PubMed  Google Scholar 

  4. Ugurbil K, Adriany G, Andersen P et al (2003) Ultrahigh field magnetic resonance imaging and spectroscopy. Magn Reson Imaging 21:1263–1281

    Article  PubMed  Google Scholar 

  5. Hoult DI, Phil D (2000) Sensitivity and power deposition in a high-field imaging experiment. J Magn Reson Imaging 12:46–67

    Article  PubMed  CAS  Google Scholar 

  6. Kowalski ME, Jin JM, Chen J (2000) Computation of the signal-to-noise ratio of high-frequency magnetic resonance imagers. IEEE Trans Biomed Eng 47:1525–1533

    Article  PubMed  CAS  Google Scholar 

  7. Ocali O, Atalar E (1998) Ultimate intrinsic signal-to-noise ratio in MRI. Magn Reson Med 39:462–473

    Article  PubMed  CAS  Google Scholar 

  8. Otazo R, Mueller B, Ugurbil K et al (2006) Signal-to-noise ratio and spectral linewidth improvements between 1.5 and 7 Tesla in proton echo-planar spectroscopic imaging. Magn Reson Med 56:1200–1210

    Article  PubMed  CAS  Google Scholar 

  9. Vaughan JT, Garwood M, Collins CM et al (2001) 7 T vs. 4 T: RF power, homogeneity, and signal-to-noise comparison in head images. Magn Reson Med 46:24–30

    Article  PubMed  CAS  Google Scholar 

  10. Haacke EM, Brown RW, Thompson MR, Venkatesan R (1999) Magnetic resonance imaging: physical principles and sequence design. Wiley, New York

  11. Aime S, Dastru W, Gobetto R et al (2008) Agents for polarization enhancement in MRI. Handb Exp Pharmacol 247–272

  12. Schenck JF (1996) The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med Phys 23:815–850

    Article  PubMed  CAS  Google Scholar 

  13. Bloembergen N, Purcell EM, Pound RV (1948) Relaxation effects in nuclear magnetic resonance absorption. Phys Rev 73:679–712

    Article  CAS  Google Scholar 

  14. Wright PJ, Mougin OE, Totman JJ et al (2008) Water proton T1 measurements in brain tissue at 7, 3, and 1.5 T using IR-EPI, IR-TSE, and MPRAGE: results and optimization. MAGMA 21:121–130

    Article  PubMed  CAS  Google Scholar 

  15. Van de Moortele PF, Auerbach EJ, Olman C et al (2009) T1 weighted brain images at 7 Tesla unbiased for proton density, T2* contrast and RF coil receive B1 sensitivity with simultaneous vessel visualization. Neuroimage 46:432–446

    Article  Google Scholar 

  16. Kang CK, Park CW, Han JY et al (2009) Imaging and analysis of lenticulostriate arteries using 7.0-Tesla magnetic resonance angiography. Magn Reson Med 61:136–144

    Article  PubMed  Google Scholar 

  17. Golay X, Petersen ET (2006) Arterial spin labeling: benefits and pitfalls of high magnetic field. Neuroimaging Clin North Am 16:259–268, x

    Article  Google Scholar 

  18. Wehrli FW, MacFall JR, Shutts D (1984) Mechanisms of contrast in NMR imaging. J Comput Assist Tomogr 8:369–380

    Article  PubMed  CAS  Google Scholar 

  19. Yacoub E, Duong TQ, Van De Moortele PF et al (2003) Spin-echo fMRI in humans using high spatial resolutions and high magnetic fields. Magn Reson Med 49:655–664

    Article  PubMed  Google Scholar 

  20. Rohrer M, Bauer H, Mintorovitch J et al (2005) Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest Radiol 40:715–724

    Article  PubMed  Google Scholar 

  21. Laurent S, Elst LV, Muller RN (2006) Comparative study of the physicochemical properties of six clinical low molecular weight gadolinium contrast agents. Contrast Media Mol Imaging 1:128–137

    Article  PubMed  CAS  Google Scholar 

  22. Hoult DI, Lauterbur PC (1979) The sensitivity of the zeugmatographic experiment involving human samples. J Magn Reson 34:425–433

    CAS  Google Scholar 

  23. Robitaille PM, Abduljalil AM, Kangarlu A et al (1998) Human magnetic resonance imaging at 8 T. NMR Biomed 11:263–265

    Article  PubMed  CAS  Google Scholar 

  24. Weigel M, Hennig J (2006) Contrast behavior and relaxation effects of conventional and hyperecho-turbo spin echo sequences at 1.5 and 3 T. Magn Reson Med 55:826–835

    Article  PubMed  Google Scholar 

  25. Weigel M, Zaitsev M, Hennig J (2007) Inversion recovery prepared turbo spin echo sequences with reduced SAR using smooth transitions between pseudo steady states. Magn Reson Med 57:631–637

    Article  PubMed  Google Scholar 

  26. Conolly S, Nishimura DG, Macovski A, Glover G (1988) Variable-rate selective excitation. J Magn Reson 78:440–458

    Google Scholar 

  27. Gabriel C, Gabriel S, Corhout E (1996) The dielectric properties of biological tissues: I. literature survey. Phys Med Biol 41:2231–2249

    Article  PubMed  CAS  Google Scholar 

  28. Van de Moortele PF, Akgun C, Adriany G et al (2005) B(1) destructive interferences and spatial phase patterns at 7 T with a head transceiver array coil. Magn Reson Med 54:1503–1518

    Article  Google Scholar 

  29. Homann H, Bornert P, Eggers H et al (2011) Toward individualized SAR models and in vivo validation. Magn Reson Med 66:1767–1776

    Article  PubMed  CAS  Google Scholar 

  30. Voigt T, Homann H, Katscher U, Doessel O (2012) Patient-individual local SAR determination: in vivo measurements and numerical validation. Magn Reson Med 68:1117–1126

    Article  PubMed  CAS  Google Scholar 

  31. Scheenen TW, Heerschap A, Klomp DW (2008) Towards 1H-MRSI of the human brain at 7 T with slice-selective adiabatic refocusing pulses. MAGMA 21:95–101

    Article  PubMed  CAS  Google Scholar 

  32. Yang QX, Mao W, Wang J et al (2006) Manipulation of image intensity distribution at 7.0 T: passive RF shimming and focusing with dielectric materials. J Magn Reson Imaging 24:197–202

    Article  PubMed  CAS  Google Scholar 

  33. Abraham R, Ibrahim TS (2007) Proposed radiofrequency phased-array excitation scheme for homogenous and localized 7-Tesla whole-body imaging based on full-wave numerical simulations. Magn Reson Med 57:235–242

    Article  PubMed  Google Scholar 

  34. Mao W, Smith MB, Collins CM (2006) Exploring the limits of RF shimming for high-field MRI of the human head. Magn Reson Med 56:918–922

    Article  PubMed  Google Scholar 

  35. Orzada S, Maderwald S, Poser BA et al (2010) RF excitation using time interleaved acquisition of modes (TIAMO) to address B1 inhomogeneity in high-field MRI. Magn Reson Med 64:327–333

    PubMed  Google Scholar 

  36. Raaijmakers AJ, Ipek O, Klomp DW et al (2011) Design of a radiative surface coil array element at 7 T: the single-side adapted dipole antenna. Magn Reson Med 66:1488–1497

    Article  PubMed  CAS  Google Scholar 

  37. Vaughan JT, Snyder CJ, DelaBarre LJ et al (2009) Whole-body imaging at 7 T: preliminary results. Magn Reson Med 61:244–248

    Article  PubMed  Google Scholar 

  38. Bergen B van den, Van den Berg CA, Bartels LW, Lagendijk JJ (2007) 7 T body MRI: B1 shimming with simultaneous SAR reduction. Phys Med Biol 52:5429–5441

    Article  PubMed  Google Scholar 

  39. Katscher U, Bornert P (2006) Parallel RF transmission in MRI. NMR Biomed 19:393–400

    Article  PubMed  Google Scholar 

  40. Zhu Y (2004) Parallel excitation with an array of transmit coils. Magn Reson Med 51:775–784

    Article  PubMed  Google Scholar 

  41. Setsompop K, Wald LL, Alagappan V et al (2006) Parallel RF transmission with eight channels at 3 Tesla. Magn Reson Med 56:1163–1171

    Article  PubMed  Google Scholar 

  42. Alt S, Muller M, Umathum R et al (2012) Coaxial waveguide MRI. Magn Reson Med 67:1173–1182

    Article  PubMed  Google Scholar 

  43. Brunner DO, De Zanche N, Frohlich J et al (2009) Travelling-wave nuclear magnetic resonance. Nature 457:994–998

    Article  PubMed  CAS  Google Scholar 

  44. Schenck JF (2005) Physical interactions of static magnetic fields with living tissues. Prog Biophys Mol Biol 87:185–204

    Article  PubMed  Google Scholar 

  45. Frauenrath T, Hezel F, Heinrichs U et al (2009) Feasibility of cardiac gating free of interference with electro-magnetic fields at 1.5 Tesla, 3.0 Tesla and 7.0 Tesla using an MR-stethoscope. Invest Radiol 44:539–547

    Article  PubMed  Google Scholar 

  46. Henneberg S, Hok B, Wiklund L, Sjodin G (1992) Remote auscultatory patient monitoring during magnetic resonance imaging. J Clin Monit 8:37–43

    Article  PubMed  CAS  Google Scholar 

  47. Becker M, Frauenrath T, Hezel F et al (2010) Comparison of left ventricular function assessment using phonocardiogram- and electrocardiogram-triggered 2D SSFP CINE MR imaging at 1.5 T and 3.0 T. Eur Radiol 20:1344–1355

    Article  PubMed  Google Scholar 

  48. Nassenstein K, Orzada S, Haering L et al (2012) Cardiac MRI: evaluation of phonocardiogram-gated cine imaging for the assessment of global und regional left ventricular function in clinical routine. Eur Radiol 22:559–568

    Article  PubMed  Google Scholar 

  49. Glover PM, Cavin I, Qian W et al (2007) Magnetic-field-induced vertigo: a theoretical and experimental investigation. Bioelectromagnetics 28:349–361

    Article  PubMed  CAS  Google Scholar 

  50. Chakeres DW, Bornstein R, Kangarlu A (2003) Randomized comparison of cognitive function in humans at 0 and 8 Tesla. J Magn Reson Imaging 18:342–345

    Article  PubMed  Google Scholar 

  51. Chakeres DW, Kangarlu A, Boudoulas H, Young DC (2003) Effect of static magnetic field exposure of up to 8 Tesla on sequential human vital sign measurements. J Magn Reson Imaging 18:346–352

    Article  PubMed  Google Scholar 

  52. Heinrich A, Szostek A, Meyer P et al (2012) Cognition and sensation in very high static magnetic fields: a randomized case-crossover study with different field strengths. Radiology, in press

  53. Schlamann M, Voigt MA, Maderwald S et al (2010) Exposure to high-field MRI does not affect cognitive function. J Magn Reson Imaging 31:1061–1066

    Article  PubMed  Google Scholar 

  54. Vocht F de, Stevens T, Glover P et al (2007) Cognitive effects of head-movements in stray fields generated by a 7 Tesla whole-body MRI magnet. Bioelectromagnetics 28:247–255

    Article  PubMed  Google Scholar 

  55. Nierop LE van, Slottje P, Zandvoort MJ van et al (2012) Effects of magnetic stray fields from a 7 Tesla MRI scanner on neurocognition: a double-blind randomised crossover study. Occup Environ Med 69:759–766

    Article  PubMed  Google Scholar 

  56. Heilmaier C, Theysohn JM, Maderwald S et al (2011) A large-scale study on subjective perception of discomfort during 7 and 1.5 T MRI examinations. Bioelectromagnetics 32:610–619

    Article  PubMed  Google Scholar 

  57. Nagel AM, Schmitter S, Bock M et al (2009) Parameter optimization for 7 T 23Na-MRI. In: Proc of the international society for magnetic resonance in medicine. ISMRM, Honolulu, p 2465

  58. Noebauer-Huhmann IM, Szomolanyi P, Juras V et al (2010) Gadolinium-based magnetic resonance contrast agents at 7 Tesla: in vitro T1 relaxivities in human blood plasma. Invest Radiol 45:554–558

    Article  PubMed  CAS  Google Scholar 

  59. Hardy CJ, Cline HE (1989) Broadband nuclear magnetic resonance pulses with two-dimensional spatial selectivity. J Appl Phys 66:1513–1516

    Article  Google Scholar 

  60. Pauly JM, Nishimura DG, Macovski A (1989) A k-space analysis of small-tip-angle excitation. J Magn Reson 81:43–56

    Google Scholar 

  61. Meyer CH, Pauly JM, Macovski A, Nishimura DG (1990) Simultaneous spatial and spectral selective excitation. Magn Reson Med 15:287-304

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt für sich und seinen Koautor an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.E. Ladd.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ladd, M., Bock, M. Probleme und Chancen der Hochfeldmagnetresonanztomographie. Radiologe 53, 401–410 (2013). https://doi.org/10.1007/s00117-012-2344-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-012-2344-x

Schlüsselwörter

Keywords

Navigation