Skip to main content
Log in

Moderne CT- und PET/CT-Bildgebung der Leber

Modern CT and PET/CT imaging of the liver

  • Leitthema
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammmenfassung

Die Computertomographie (CT) ist heute breit verfügbar und stellt eine wichtige und schnelle Methode zur Diagnostik akuter Lebererkrankungen, der Artdiagnostik fokaler Leberläsionen und der Planung interventioneller Therapiemaßnahmen sowie der postinterventionellen Kontrolle dar. In den letzten Jahren hat die CT trotz des zunehmenden Stellenwerts der Magnetresonanztomographie (MRT) nicht an Bedeutung verloren. Durch den Einsatz unterschiedlicher Kontrastmittelphasen kann meist eine gute Charakterisierung von Raumforderungen erfolgen. Bei der Diagnostik des hepatozellulären Karzinoms (HCC) sollte beispielsweise immer ein triphasisches Untersuchungsprotokoll angewendet werden. Mit Einführung der Dual-energy-CT hat die Sensitivität in der Darstellung hyper- und hypovaskularisierter Leberläsionen zugenommen. Ebenfalls ist es durch virtuelle native Bilder möglich geworden, auf eine zusätzliche native Bildgebung zu verzichten, wodurch die Strahlenexposition des Patienten vermindert werden kann. Die PET/CT hat in der onkologischen Bildgebung den Vorteil, dass nahezu der gesamte Körper des Patienten abgebildet wird. Hier ist auch die Hauptindikation der PET/CT zu sehen (Ganzkörperstaging). Bei rein hepatischer Fragestellung hat die FDG-PET/CT unter Verwendung diagnostischer CT-Daten zwar eine höhere Genauigkeit als die CT alleine, ist der MRT jedoch unterlegen.

Abstract

Computed tomography (CT) is now widely available and represents an important and rapid method for the diagnostics of acute liver disease, characterization of focal liver lesions, planning of interventional therapy measures and postintervention control. In recent years CT has not become less important despite the increasing value of magnetic resonance imaging (MRI). By the use of different contrast medium phases good characterization of space-occupying lesions can be achieved. For the diagnostics of hepatocellular carcinoma (HCC) a triphasic examination protocol should always be implemented. The introduction of dual energy CT increased the sensitivity of imaging of hypervascularized and hypovascularized liver lesions and by the use of virtual native imaging it has become possible to avoid additional native imaging which reduces the x-ray exposition of patients. Positron emission tomography (PET) has an advantage for imaging in oncology because nearly the complete body of the patient can be screened and this is the main indication for PET/CT (whole-body staging). For purely hepatic problems 18F-fluorodeoxyglucose (FDG)-PET/CT using diagnostic CT data has a higher precision than CT alone but is inferior to MRI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7

Literatur

  1. Weg N, Scheer MR, Gabor MP (1998) Liver lesions: improved detection with dual-detector-array CT and routine 2.5 mm thin collimation. Radiology 209:417–426

    PubMed  CAS  Google Scholar 

  2. Karçaaltıncaba M, Aktaş A (2010) Dual-energy CT revisited with multidetector CT: review of principles and clinical applications. Diagn Interv Radiol. DOI: 10.4261/1305-3825.DIR.3860-10.0

  3. Altenbernd J, Heusner TA, Ringelstein A et al (2010) Dual-energy-CT of hypervascular liver lesions in patients with HCC: investigation of image quality and sensitivity. Eur Radiol [Epub ahead of print]

  4. Park JH, Kim AH, Park HS et al (2010) Added value of 80 kVp images to averaged 120 kVp images in the detection of hepatocellular carcinomas in livertransplantation candidates using dual-source dual-energy MDCT: results of JAFROC analysis. Eur J Radiol [Epub ahead of print]

  5. Robinson E, Babb J, Chandarana H, Macari M (2010) Dual source dual energy MDCT: comparison of 80 kVp and weighted average 120 kVp data for conspicuity of hypo-vascular liver metastases. Invest Radiol 45:413–418

    PubMed  Google Scholar 

  6. Antoch G, Saoudi N, Kuehl H et al (2004) Accuracy of whole-body dual-modality fluorine-18-2-fluoro-2-deoxy-d-glucose positron emission tomography and computed tomography (FDG-PET/CT) for tumor staging in solid tumors: comparison with CT and PET. J Clin Oncol 22(21):4357–4368

    Article  PubMed  Google Scholar 

  7. Chan WC, Joe BN, Coakley FV et al (2006) Gallstone detection at CT in vitro: effect of peak voltage setting. Radiology 241(2):546–553

    Article  PubMed  Google Scholar 

  8. Boll TD, Merkle EM (2009) Diffuse liver disease: strategies for hepatic and MR imaging. Radiographics 29:1591–1614

    Article  PubMed  Google Scholar 

  9. Brink JA, Heiken JP, Forman HP et al (1995) Hepatic spiral CT: reduction of dose of intravenous contrast material. Radiology 197:83–88

    PubMed  CAS  Google Scholar 

  10. Baron RL (1994) Understanding and optimizing use of contrast material for CT of the liver. AJR Am J Roentgenol 163:323–331

    PubMed  CAS  Google Scholar 

  11. Awai K, Inoue M, Yagyu Y et al (2004) Moderate versus high concentration of contrast material for aortic and hepatic enhancement and tumor-to-liver contrast at multi-detector row CT. Radiology 233:682–688

    Article  PubMed  Google Scholar 

  12. Matoba M, Kitadate M, Kondou T et al (2009) Depiction of hypervascular hepatocellular carcinoma with 64-MDCT: comparison of moderate- and high concentration contrast material with and without saline flush. AJR Am J Roentgenol 193:738–744

    Article  PubMed  Google Scholar 

  13. Foley DW, Mallisee TA, Hohenwalter MD et al (2000) Multiphase hepatic CT with a multirow detector CT scanner. AJR Am J Roentgenol 175:679–685

    PubMed  CAS  Google Scholar 

  14. Ichikawa T, Kitamura T, Nakajima H et al (2002) Hypervascular hepatocellular carcinoma: can double arterial phase imaging with multidetector CT improve tumor depiction in the cirrhotic liver? AJR Am J Roentgenol 179(3):751–758

    PubMed  Google Scholar 

  15. Laghi A, Iannaccone R, Rossi P, Carbone I et al (2003) Hepatocellular carcinoma: detection with triple-phase multi-detector row helical CT in patients with chronic hepatitis. Radiology 226(2):543–549

    Article  PubMed  Google Scholar 

  16. Schima W, Kulinna C, Ba-Ssalamah A et al (2005) Multidetektor-CT (MDCT) der Leber. Radiologe 45:15–23

    Article  PubMed  CAS  Google Scholar 

  17. Guan Y, Zheng X, Zhou X et al (2004) Multidetector CT in evaluating blood supply of hepatocellular carcinoma after transcatheter arterial chemoembolization. World J Gastroenterol 10(14):2127–2129

    PubMed  Google Scholar 

  18. Vogt FM, Antoch G, Veit P et al (2007) Morphologic and functional changes in nontumorous liver tissue after radiofrequency ablation in an in vivo model: comparison of 18F-FDG PET/CT, MRI, ultrasound, and CT. J Nucl Med 48(11):1836–1844

    Article  PubMed  Google Scholar 

  19. Atassi B, Bangash AK, Salem R et al (2008) Multimodality Imaging following 90Y radioembolization: a comprehensive review and pictorial essay. Radiographics 28:81–99

    Article  PubMed  Google Scholar 

  20. Marshall W, Hall E, Doost-Hoseini A et al (1984) An implementation of dual energy CT scanning. J Comput Assist Tomogr 8:745–749

    Article  PubMed  CAS  Google Scholar 

  21. Kalender WA, Perman WH, Vetter JR et al (1986) Evaluation of a prototype dual-energy computed tomographic apparatus. I. Phantom studies. Med Phys 13:334–339

    Article  PubMed  CAS  Google Scholar 

  22. Zhang L, Peng J, Wu S et al (2010) Liver virtual non-enhanced CT with dual-source, dual-energy CT: a preliminary study. Eur Radiol 20:2257–2264

    Article  PubMed  Google Scholar 

  23. De Cecco CN, Buffa V, Fedeli Y et al (2010) Dual energy CT (DECT) of the liver: conventional versus virtual unenhanced images. Eur Radiol 20:2870–2875

    Article  Google Scholar 

  24. Petersilka M, Bruder H, Krauss B et al (2008) Technical principles of dual source CT. Eur J Radiol 68:362–368

    Article  PubMed  Google Scholar 

  25. Yeh BM, Shepherd JA, Wang ZJ et al (2009) Dual-energy and low-kVp CT in the abdomen. AJR Am J Roentgenol 193:47–54

    Article  PubMed  Google Scholar 

  26. Coursey CA, Nelson RC, Boll DT et al (2010) Dual-energy multidetector CT: how does it work, what can it tell us, and when can we use it in abdominopelvic imaging? Radiographics 30:1037–1055

    Article  PubMed  Google Scholar 

  27. Marin D, Nelson RC, Samei E et al (2009) Hypervascular liver tumors: low tube voltage, high tube current multidetector CT during late hepatic arterial phase for detection – initial clinical experience. Radiology 251(3)

  28. Fletcher JG, Takahashi N, Hartman R et al (2009) Dual-energy and dual-source CT: is there a role in the abdomen and pelvis? Radiol Clin North Am 47:41–57

    Article  PubMed  Google Scholar 

  29. Veit-Haibach P, Treyer V, Strobel K et al (2010) Feasibility of integrated CT-liver perfusion in routine FDG-PET/CT. Abdom Imaging 35(5):528–536

    Article  PubMed  Google Scholar 

  30. Veit-Haibach P, Treyer V, Strobel K et al (2005) Detection and localization of prostate cancer: correlation of (11)C-choline PET/CT with histopathologic step-section analysis. J Nucl Med 46(10):1642–1649

    Google Scholar 

  31. Niekel MC, Bipat S, Stoker J et al (2010) Diagnostic imaging of colorectal liver metastases with CT, MR imaging, FDG PET, and/or FDG PET/CT: a meta-analysis of prospective studies including patients who have not previously undergone treatment. Radiology 257(3):674–684

    Article  PubMed  Google Scholar 

  32. Bellomi M, Rizzo S, Travaini LL, Bazzi L et al (2007) Role of multidetector CT and FDG-PET/CT in the diagnosis of local and distant recurrence of resected rectal cancer. Radiol Med 112(5):681–690

    Article  PubMed  CAS  Google Scholar 

  33. Klingenstein A, Haug AR, Nentwich MM et al (2010) Whole-body F-18-fluoro-2-deoxyglucose positron emission tomography/computed tomography imaging in the follow-up of metastatic uveal melanoma. Melanoma Res 20(6):511–516

    Article  PubMed  Google Scholar 

  34. Niekel MC, Bipat S, Stoker J et al (2010)Diagnostic imaging of colorectal liver metastases with CT, MR imaging, FDG PET, and/or FDG PET/CT: a meta-analysis of prospective studies including patients who have not previously undergone treatment. Radiology 257(3):674–684

    Article  PubMed  Google Scholar 

  35. Dirisamer A, Halpern BS, Schima W et al (2008) Dual-time-point FDG-PET/CT for the detection of hepatic metastases. Mol Imaging Biol 10(6):335–340

    Article  PubMed  Google Scholar 

  36. Soyka JD, Veit-Haibach P, Strobel K et al (2008) Staging pathways in recurrent colorectal carcinoma: is contrast-enhanced 18F-FDG PET/CT the diagnostic tool of choice? J Nucl Med 49(3):354–361

    Article  PubMed  Google Scholar 

  37. Buck AK, Stollfuss JC, Stahl A et al (2007) Nuklearmedizinische Diagnostik von Lebertumoren. Internist 248:21–29

    Article  Google Scholar 

  38. Park JW, Kim JH, Kim SK et al (2008) Prospective evaluation of 18F-FDG and 11C-acetate PET/CT for detection of primary and metastatic hepatocellular carcinoma. J Nucl Med 49:1912–1921

    Article  PubMed  Google Scholar 

  39. Sun L, Guan YS, Pan WM et al (2007) Positron emission tomography/computer tomography in guidance of extrahepatic hepatocellular carcinoma metastasis management. World J Gastroenterol 28;13(40):5413–5415

    Google Scholar 

  40. Yang SH, Suh KS, Lee HW, Cho EH et al (2006) The role of (18)F-FDG-PET imaging for the selection of liver transplantation candidates among hepatocellular carcinoma patients. Liver Transpl 12(11):1655–1660

    Article  PubMed  Google Scholar 

  41. Ho CL, Chen S, Yeung DW et al (2007)Dual-tracer PET/CT imaging in evaluation of metastatic hepatocellular carcinoma. J Nucl Med 48(6):902–909

    Article  PubMed  CAS  Google Scholar 

  42. Talbot JN, Fartoux L, Balogova S et al (2010) Detection of hepatocellular carcinoma with PET/CT: a prospective comparison of 18F-fluorocholine and 18F-FDG in patients with cirrhosis or chronic liver disease. J Nucl Med 51(11):1699–1706

    Article  PubMed  Google Scholar 

  43. Antoch G, Vogt FM, Veit P et al (2005) Assessment of liver tissue after radiofrequency ablation: findings with different imaging procedures. J Nucl Med 46(3):520–525

    PubMed  Google Scholar 

  44. Kuehl H, Antoch G, Stergar H et al (2008) Comparison of FDG-PET, PET/CT and MRI for follow-up of colorectal liver metastases treated with radiofrequency ablation: initial results. Eur J Radiol 67(2):362–371

    Article  PubMed  Google Scholar 

  45. Kim HO, Kim JS, Shin YM et al (2010) Evaluation of metabolic characteristics and viability of lipiodolized hepatocellular carcinomas using 18F-FDG PET/CT. J Nucl Med 51:1849–1856

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Die korrespondierende Autorin gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Klasen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klasen, J., Heusner, T., Riegger, C. et al. Moderne CT- und PET/CT-Bildgebung der Leber. Radiologe 51, 671–679 (2011). https://doi.org/10.1007/s00117-010-2125-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-010-2125-3

Schlüsselwörter

Keywords

Navigation