Skip to main content

Advertisement

Log in

Kontrastmittelsonographie am Tiermodell

Contrast-enhanced ultrasound in animal models

  • Leitthema
  • Published:
Der Radiologe Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Zusammenfassung

In der Vergangenheit war die Darstellung der Tumorperfusion ausschließlich mit Hilfe invasiver Verfahren wie etwa der intravitalen Mikroskopie oder aber apparativ aufwendiger Großgeräte wie z. B. bei der Multidetektorcomputertomographie (MDCT), der Magnetresonanztomographie (MRT) oder dem gemeinsamen Einsatz der Positronenemissionstomographie und der Computertomographie (PET/CT) möglich. Ein Vorteil der Sonographie ist die nichtinvasive Darstellung des Körperinneren mit einer hohen räumlichen und zeitlichen Auflösung ohne Anwendung ionisierender Strahlung. Durch die Anwendung der farbkodierten Duplexsonographie (FKDS) sowie des Powerdopplers lässt sich jedoch keine Tumorvaskularität detektieren. Die Einführung des kontrastverstärkten Ultraschalls („contrast-enhanced ultrasound“, CEUS) sowie die Entwicklung neuer hochfrequenter Ultraschallköpfe ermöglichen es, die Mikrozirkulation in Tumoren zeitlich hochaufgelöst zu detektieren und zu quantifizieren. Der CEUS wird in der Klinik bereits seit über 10 Jahren am Menschen eingesetzt. In letzter Zeit wird er auch für tierexperimentelle Untersuchungen, z. B. bei Tumormodellen an Mäusen, Hamstern oder Ratten genutzt. Durch die Analyse der individuellen Kontrastmittelkinetik vor und nach Therapie können funktionelle Informationen über den angiogenetisch-metabolischen Status des Gewebes gewonnen werden. Weitere Forschungsprojekte sind nötig, um eine absolute Quantifizierung der Perfusionsparameter zu erreichen und die wünschenswerte Vergleichbarkeit mit anderen Untersuchungsmodalitäten (MRT, CT) herstellen zu können.

Abstract

In the past the detection of tumor perfusion was achieved solely via invasive procedures, such as intravital microscopy or with the help of costly modalities, such as multidetector computed tomography (MDCT), magnetic resonance tomography (MRT) or the combined use of positron emission tomography and computed tomography (PET/CT). Ultrasound offers the non-invasive display of organs without usage of ionizing radiation and it is widely available. However, colour-coded ultrasound and power Doppler do not allow the detection of tumor microcirculation. The introduction of contrast-enhanced ultrasound (CEUS) as well as new high-frequency ultrasound probes made it possible to detect and quantify tumor microcirculation with high resolution. CEUS has been used clinically on human beings for more than 10 years. During the last years different tumor models in experimental animals were used for the establishment of this new technique, e.g. in rats, hamsters and mice. CEUS allows the detection of functional parameters, such as the angiogenetic metabolic status of tissue pretreatment and posttreatment. Further research is required to solve the problems of absolute quantification of these perfusion parameters to allow the comparison of CEUS with other modalities (e.g. MRT and CT).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9

Literatur

  1. Asaishi K, Endrich B, Gotz A, Messmer K (1981) Quantitative analysis of microvascular structure and function in the amelanotic melanoma A-Mel-3. Cancer Res 41(5):1898–1904

    PubMed  CAS  Google Scholar 

  2. Greis C, Dietrich CF (2007) Ultraschallkontrastmittel und kontrastverstärkte Sonographie. In: Dietrich CF (Hrsg) Endosonographie: Lehrbuch und Atlas des endoskopischen Ultraschalls. Thieme, Stuttgart

  3. Clevert D-A, Horng A, Kopp R et al (2009) Imaging of endoleaks after endovascular aneurysm repair (EVAR) with contrast-enhanced ultrasound (CEUS). Radiologe 49(11):1033–1039

    Article  PubMed  Google Scholar 

  4. Clevert D-A, Horng A, Reiser MF (2009) Ultrasound imaging of the abdominal aorta. Radiologe 49(11):1024–1032

    Article  PubMed  Google Scholar 

  5. Clevert D-A, Horng A, Staehler M et al (2010) Diagnostic algorithm in cystic renal masses. Urologe A 49(3):421–431; quiz 432

    Article  PubMed  Google Scholar 

  6. Clevert D-A, Jung EM, Kubale R et al (2008) Value of vascular ultrasound in the evaluation of hemodialysis fistulas. Radiologe 48(3):272–280

    Article  PubMed  Google Scholar 

  7. Eichhorn ME, Klotz LV, Luedemann S et al (2009) Vascular targeting tumor therapy: non-invasive contrast enhanced ultrasound for quantitative assessment of tumor microcirculation. Cancer Biol Ther 9(10)

  8. Folkman J (1990) What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 82(1):4–6

    Article  PubMed  CAS  Google Scholar 

  9. Greis C (2009) Ultrasound contrast agent as markers of vascularity and microcirculation. Clin Hemorheol Microcirc 43:1–9

    PubMed  Google Scholar 

  10. Horng A, Reiser M, Clevert D-A (2009) Current developments in vascular ultrasound. Radiologe 49(11):998–1004

    Article  PubMed  CAS  Google Scholar 

  11. Horng A, Reiser MF, Clevert D-A (2010) Modern sonography in the diagnosis of acute abdomen. Radiologe 50(3):214–225

    Article  PubMed  CAS  Google Scholar 

  12. Ko EY, Lee SH, Kim HH et al (2008) Evaluation of tumor angiogenesis with a second-generation US contrast medium in a rat breast tumor model. Korean J Radiol 9(3):243–249

    Article  PubMed  Google Scholar 

  13. Lassau N, Chami L, Chebil M et al (2011) Dynamic contrast-enhanced ultrasonography (DCE-US) and anti-angiogenic treatments. Discov Med 11(56):18–24

    PubMed  Google Scholar 

  14. Leguerney I, Lassau N, Koscielny S et al (2010) Combining functional imaging and interstitial pressure measurements to evaluate two anti-angiogenic treatments. Invest New Drugs. [Epub ahead of print]

  15. Lucidarme O, Nguyen T, Kono Y et al (2004) Angiogenesis model for ultrasound contrast research: exploratory study. Acad Radiol 11(1):4–12

    Article  PubMed  Google Scholar 

  16. McCarville MB, Streck CJ, Dickson PV et al (2006) Angiogenesis inhibitors in a murine neuroblastoma model: quantitative assessment of intratumoral blood flow with contrast-enhanced gray-scale US. Radiology 240(1):73–81

    Article  PubMed  Google Scholar 

  17. Paprottka PM, Cyran CC, Zengel P et al (o J) Absolute quantification of an antiangionetic therapy of prostate cancer in rats. In preparation

  18. Paprottka PM, Cyran CC, Zengel P et al (o J) Parmatric evaluation of antiangionetic therapie of prostate carcinoma in rats. In preparation

  19. Paprottka PM, Cyran CC, Zengel P et al (2010) Non-invasive contrast enhanced ultrasound for quantitative assessment of tumor microcirculation. Contrast mixed mode examination vs. only contrast enhanced ultrasound examination. Clin Hemorheol Microcirc 46(2–3):149–158

    Google Scholar 

  20. Schulte-Altedorneburg G, Clevert D-A (2009) Color duplex sonography of extracranial brain-supplying arteries. Radiologe 49(11):1016–1023

    Article  PubMed  CAS  Google Scholar 

  21. Sourbron S (2010) Technical aspects of MR perfusion. Eur J Radiol 76(3):304–313

    Article  PubMed  Google Scholar 

  22. Sourbron S, Ingrisch M, Siefert A et al (2009) Quantification of cerebral blood flow, cerebral blood volume, and blood-brain-barrier leakage with DCE-MRI. Magn Reson Med 62(1):205–217

    Article  PubMed  Google Scholar 

  23. Stieger SM, Bloch SH, Foreman O et al (2006) Ultrasound assessment of angiogenesis in a matrigel model in rats. Ultrasound Med Biol 32(5):673–681

    Article  PubMed  Google Scholar 

  24. Topp KA, Zachary JF, O’Brien WD Jr (2001) Quantifying B-mode images of in vivo rat mammary tumors by the frequency dependence of backscatter. J Ultrasound Med 20(6):605–612

    PubMed  CAS  Google Scholar 

  25. Persijn van Meerten EL van, Gelderblom H, Bloem JL (2009) RECIST revised: implications for the radiologist. A review article on the modified RECIST guideline. Eur Radiol 20(6):1456–1467

    Article  Google Scholar 

  26. Zhou JH, Cao LH, Zheng W et al (2010) Contrast-enhanced gray-scale ultrasound for quantitative evaluation of tumor response to chemotherapy: preliminary results with a mouse hepatoma model. AJR Am J Roentgenol 196(1):W13–W17

    Article  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P.M. Paprottka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paprottka, P., Zengel, P., Ingrisch, M. et al. Kontrastmittelsonographie am Tiermodell. Radiologe 51, 506–513 (2011). https://doi.org/10.1007/s00117-010-2105-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-010-2105-7

Schlüsselwörter

Keywords

Navigation