Skip to main content
Log in

Biochemische MR-Bildgebung der Bandscheibe und Facettengelenke der Wirbelsäule

Biochemical magnetic resonance imaging of intervertebral discs and facet joints

  • Leitthema
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Da Standard-MRT-Untersuchungen bei Patienten mit Rückenschmerzen nur eine beschränkte Spezifität aufweisen, sind die Entwicklung und Erforschung neuer bildgebender Verfahren für die Wirbelsäule sinnvoll. Quantitative MR-Methoden haben das Potenzial, biochemische Veränderungen verschiedener Wirbelsäulenstrukturen in vivo festzustellen. Die Möglichkeiten liegen hier v. a. in der Früherkennung von Bandscheiben- und Facettengelenkveränderungen bei Patienten jungen und mittleren Alters, denen durch spezifische Therapien und präventive Maßnahmen geholfen werden kann. Mögliche Techniken stellen hier das T2- und T2*-Mapping, die diffusionsgewichtete Bildgebung, Magnetisierungstransferbildgebung, das T1ρ-Mapping, die Natriumbildgebung und MR-Spektroskopie dar. Zukünftig sind longitudinale Studien mit geeignetem Design nötig, die sowohl biochemische als auch klinische Parameter im Therapieverlauf beobachten. Die Verwendung von Hochfeldsystemen (3 Tesla) ist eine Voraussetzung für die biochemische MR-Bildgebung hoher Qualität bei klinisch akzeptabler Untersuchungszeit.

Abstract

The limited specificity of standard magnetic resonance imaging (MRI) in patients with low back pain encourages the development of new imaging techniques. Quantitative MR methods have the potential to assess biochemical changes of spinal structures in vivo. Early diagnosis of intervertebral disc and facet joint changes in young to middle aged patients allows the use of a specific therapy and preventative measures. Potential techniques are T2 and T2* mapping, diffusion-weighted imaging, magnetization transfer imaging, T1ρ mapping, sodium imaging and MR spectroscopy. Well designed longitudinal therapy studies, which assess biochemical and clinical parameters, are necessary. High-field MR systems (3 Tesla) are needed for high resolution biochemical MRI and clinically reasonable scan times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Antoniou J, Pike GB, Steffen T et al (1998) Quantitative magnetic resonance imaging in the assessment of degenerative disc disease. Magn Reson Med 40:900–907

    Article  CAS  PubMed  Google Scholar 

  2. Beattie PF, Donley JW, Arnot CF, Miller R (2009) The change in the diffusion of water in normal and degenerative lumbar intervertebral discs following joint mobilization compared to prone lying. J Orthop Sports Phys Ther 39:4–11

    PubMed  Google Scholar 

  3. Beattie PF, Morgan PS, Peters D (2008) Diffusion-weighted magnetic resonance imaging of normal and degenerative lumbar intervertebral discs: a new method to potentially quantify the physiologic effect of physical therapy intervention. J Orthop Sports Phys Ther 38:42–49

    PubMed  Google Scholar 

  4. Boos N, Wallin A, Gbedegbegnon T et al (1993) Quantitative MR imaging of lumbar intervertebral disks and vertebral bodies: influence of diurnal water content variations. Radiology 188:351–354

    CAS  PubMed  Google Scholar 

  5. Carragee E, Alamin T, Cheng I et al (2006) Are first-time episodes of serious LBP associated with new MRI findings? Spine J 6:624–635

    Article  PubMed  Google Scholar 

  6. Fries P, Runge VM, Kirchin MA et al (2008) Magnetic resonance imaging of the spine at 3 Tesla. Semin Musculoskelet Radiol 12:238–252

    Article  PubMed  Google Scholar 

  7. Grunhagen T, Wilde G, Soukane DM et al (2006) Nutrient supply and intervertebral disc metabolism. J Bone Joint Surg 88 (suppl 2):30–35

    Article  PubMed  Google Scholar 

  8. Jarvik JJ, Hollingworth W, Heagerty P et al (2001) The Longitudinal Assessment of Imaging and Disability of the Back (LAIDBack) Study: baseline data. Spine 26:1158–1166

    Article  CAS  PubMed  Google Scholar 

  9. Jensen MC, Brant-Zawadzki MN, Obuchowski N et al (1994) Magnetic resonance imaging of the lumbar spine in people without back pain. N Engl J Med 331:69–73

    Article  CAS  PubMed  Google Scholar 

  10. Johannessen W, Auerbach JD, Wheaton AJ et al (2006) Assessment of human disc degeneration and proteoglycan content using T1rho-weighted magnetic resonance imaging. Spine 31:1253–1257

    Article  PubMed  Google Scholar 

  11. Karakida O, Ueda H, Ueda M, Miyasaka T (2003) Diurnal T2 value changes in the lumbar intervertebral discs. Clin Radiol 58:389–392

    Article  CAS  PubMed  Google Scholar 

  12. Kerttula LI, Jauhiainen JP, Tervonen O et al (2000) Apparent diffusion coefficient in thoracolumbar intervertebral discs of healthy young volunteers. J Magn Reson Imaging 12:255–260

    Article  CAS  PubMed  Google Scholar 

  13. Laurent D, Wasvary J, Yin J et al (2001) Quantitative and qualitative assessment of articular cartilage in the goat knee with magnetization transfer imaging. Magn Reson Imaging 19:1279–1286

    Article  CAS  PubMed  Google Scholar 

  14. Ludescher B, Effelsberg J, Martirosian P et al (2008) T2- and diffusion-maps reveal diurnal changes of intervertebral disc composition: an in vivo MRI study at 1.5 Tesla. J Magn Reson Imaging 28:252–257

    Article  PubMed  Google Scholar 

  15. Marinelli NL, Haughton VM, Munoz A, Anderson PA (2009) T2 relaxation times of intervertebral disc tissue correlated with water content and proteoglycan content. Spine 34:520–524

    Article  PubMed  Google Scholar 

  16. Nguyen-Minh C, Haughton VM, Papke RA et al (1998) Measuring diffusion of solutes into intervertebral disks with MR imaging and paramagnetic contrast medium. AJNR Am J Neuroradiol 19:1781–1784

    CAS  PubMed  Google Scholar 

  17. Nguyen AM, Johannessen W, Yoder JH et al (2008) Noninvasive quantification of human nucleus pulposus pressure with use of T1rho-weighted magnetic resonance imaging. J Bone Joint Surg 90:796–802

    Article  PubMed  Google Scholar 

  18. Paajanen H, Komu M, Lehto I et al (1994) Magnetization transfer imaging of lumbar disc degeneration. Correlation of relaxation parameters with biochemistry. Spine 19:2833–2837

    Article  CAS  PubMed  Google Scholar 

  19. Panjabi MM, Oxland T, Takata K et al (1993) Articular facets of the human spine. Quantitative three-dimensional anatomy. Spine 18:1298–1310

    Article  CAS  PubMed  Google Scholar 

  20. Perry J, Haughton V, Anderson PA et al (2006) The value of T2 relaxation times to characterize lumbar intervertebral discs: preliminary results. AJNR Am J Neuroradiol 27:337–342

    CAS  PubMed  Google Scholar 

  21. Rajasekaran S, Babu JN, Arun R et al (2004) ISSLS prize winner: a study of diffusion in human lumbar discs: a serial magnetic resonance imaging study documenting the influence of the endplate on diffusion in normal and degenerate discs. Spine 29:2654–2667

    Article  CAS  PubMed  Google Scholar 

  22. Raya JG, Dietrich O, Horng A et al (o J) T2 measurement in articular cartilage: impact of the fitting method on accuracy and precision at low SNR. Magn Reson Med 63:181–193

  23. Roberts N, Hogg D, Whitehouse GH, Dangerfield P (1998) Quantitative analysis of diurnal variation in volume and water content of lumbar intervertebral discs. Clin Anat 11:1–8

    Article  CAS  PubMed  Google Scholar 

  24. Stelzeneder D, Göd S, Hirschfeld C et al (2010) Biochemical MR of the intervertebral disc at 3.0 T: comparison of T2 mapping with morphological scoring in patients with low back pain. European Congress of Radiology (ECR), Vienna: insights into imaging 1 (suppl 1):295–296

  25. Stelzeneder D, Göd S, Welsch GH et al (2010) Short time T2 variability of the lumbar intervertebral disc – in vivo MRI study at 3 Tesla. Joint Annual Meeting ISMRM-ESMRMB, International Society for Magnetic Resonance in Medicine, European Society for Magnetic Resonance in Medicine and Biology, Stockholm

  26. Stelzeneder D, Göd S, Welsch GH et al (2010) Biochemical MRI of facet joints and intervertebral discs: axial T2 mapping at 3.0 Tesla. European Congress of Radiology (ECR), Vienna: insights into imaging 1 (suppl 1):294

  27. Tertti M, Paajanen H, Laato M et al (1991) Disc degeneration in magnetic resonance imaging. A comparative biochemical, histologic, and radiologic study in cadaver spines. Spine 16:629–634

    Article  CAS  PubMed  Google Scholar 

  28. Trattnig S, Paternostro-Sluga T, Hennig FF et al (2010) Parametric mapping techniques to visualize intervertebral discs in patients with low back pain. AAOS Annual Meeting, American Academy of Orthopedic Surgeons, New Orleans

  29. Trattnig S, Stelzeneder D, Goed S et al (2010) Lumbar intervertebral disc abnormalities: comparison of quantitative T2 mapping with conventional MR at 3.0 T. Eur Radiol, Jun 19, [Epub ahead of print]

  30. Trattnig S, Welsch GH, Juras V et al (2010) 23-Na MR imaging at 7 T after knee matrix-associated autologous chondrocyte transplantation: preliminary results. Radiology, Aug 16. [Epub ahead of print]. DOI: 10.1148/radiol.10100279

  31. Wang C, McArdle E, Fenty M et al (2010) Validation of sodium magnetic resonance imaging of intervertebral disc. Spine 35:505–510

    Article  PubMed  Google Scholar 

  32. Watanabe A, Benneker LM, Boesch C et al (2007) Classification of intervertebral disk degeneration with axial T2 mapping. AJR Am J Roentgenol 189:936–942

    Article  PubMed  Google Scholar 

  33. Weidenbaum M, Foster RJ, Best BA et al (1992) Correlating magnetic resonance imaging with the biochemical content of the normal human intervertebral disc. J Orthop Res 10:552–561

    Article  CAS  PubMed  Google Scholar 

  34. Zuo J, Saadat E, Romero A et al (2009) Assessment of intervertebral disc degeneration with magnetic resonance single-voxel spectroscopy. Magn Reson Med 62:1140–1146

    Article  CAS  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Trattnig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stelzeneder, D., Trattnig, S. Biochemische MR-Bildgebung der Bandscheibe und Facettengelenke der Wirbelsäule. Radiologe 50, 1115–1119 (2010). https://doi.org/10.1007/s00117-010-2033-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-010-2033-6

Schlüsselwörter

Keywords

Navigation