Skip to main content
Log in

Digitale Brusttomosynthese

Technische Grundlagen, aktuelle klinische Relevanz und Perspektiven für die Zukunft

Digital breast tomosynthesis

Technical principles, current clinical relevance and future perspectives

  • Leitthema
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Die digitale Vollfeldmammographie hat die konventionelle Film-Folien-Mammographie in den letzten Jahren zunehmend abgelöst. Hohe Quanteneffizienz und eine sehr gute Kontrastauflösung bei optimierter Dosis gewährleisten auch bei Frauen mit dichtem Drüsengewebe eine gute Bildqualität. Die digitale Mammographie bleibt jedoch ein Projektionsverfahren, bei dem durch überlappendes Drüsengewebe die Detektierbarkeit kleiner Veränderungen einschränkt ist. Die Tomosynthese ist ein aus der digitalen Mammographie entwickeltes Verfahren zur Schichtuntersuchung der Brust, die den Einfluss überlappender Strukturen eliminiert und eine 3D-Darstellung der Brust ermöglicht. Eine bogenförmige Bewegung der Röntgenröhre während des Scans erlaubt die Akquisition zahlreicher 2D-Aufnahmen aus unterschiedlichen Winkeln. Nachfolgende Rekonstruktionsalgorithmen im Sinne einer „Shift-and-add“-Methode verbessern die Erkennbarkeit von Details in einer bestimmten Ebene und eliminieren gleichzeitig Wischartefakte durch überlagernde Strukturen. Die Gesamtdosis entspricht dabei der einer herkömmlichen Mammographieaufnahme. Die technische Durchführung – Anzahl der Ebenen, geeignete Anoden/Filterkombinationen, Winkelbereich der Aufnahmen, Wahl der Rekonstruktionsalgorithmen – unterliegt derzeit der Optimierung. Bisherige Studien zum klinischen Stellenwert der Tomosynthese haben Screeningparameter wie die Recall- und Detektionsrate sowie Angaben zur Tumorausdehnung bei histologisch gesichertem Mammakarzinom geprüft. Weiterführende Techniken wie die kontrastmittelunterstützte Tomosynthese werden derzeit entwickelt. Eine besondere Rolle kommt dabei der Dual-energy-Bildgebung zu.

Abstract

In recent years digital full field mammography has increasingly replaced conventional film mammography. High quality imaging is guaranteed by high quantum efficiency and very good contrast resolution with optimized dosing even for women with dense glandular tissue. However, digital mammography remains a projection procedure by which overlapping tissue limits the detectability of subtle alterations. Tomosynthesis is a procedure developed from digital mammography for slice examination of breasts which eliminates the effects of overlapping tissue and allows 3D imaging of breasts. A curved movement of the X-ray tube during scanning allows the acquisition of many 2D images from different angles. Subseqently, reconstruction algorithms employing a shift and add method improve the recognition of details at a defined level and at the same time eliminate smear artefacts due to overlapping structures. The total dose corresponds to that of conventional mammography imaging. The technical procedure, including the number of levels, suitable anodes/filter combinations, angle regions of images and selection of reconstruction algorithms, is presently undergoing optimization. Previous studies on the clinical value of tomosynthesis have examined screening parameters, such as recall rate and detection rate as well as information on tumor extent for histologically proven breast tumors. More advanced techniques, such as contrast medium-enhanced tomosynthesis, are presently under development and dual-energy imaging is of particular importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7

Literatur

  1. Andersson I, Ikeda DM, Zackrisson S et al (2008) Breast tomosynthesis and digital mammography: a comparison of breast cancer visibility and BIRADS classification in a population of cancers with subtle mammographic findings. Eur Radiol 18:2817–2825

    Article  PubMed  Google Scholar 

  2. Baker J, Lo J, Hebecker A et al (2008) Digital breast tomosynthesis. Eur Radiol 18:2817–2825

    Article  Google Scholar 

  3. Bornefalk H, Lewin JM, Danielsson M, Lundqvist M (2006) Single-shot dual-energy subtraction mammography with electronic spectrum splitting: feasibility. Eur J Radiol 60(2):275–278

    Article  PubMed  Google Scholar 

  4. Chen SC, Carton AK, Albert M et al (2007) Initial clinical experience with contrast-enhanced digital breast tomosynthesis. Acad Radiol 14(2):229–238

    Article  CAS  PubMed  Google Scholar 

  5. Carton AK, Gavenonis SC, Currivan JA, Conant JA et al (2010) Dual-energy contrast-enhanced digital breast tomosynthesis – a feasibility study. Br J Radiol 83 (988):344–350

    Article  PubMed  Google Scholar 

  6. Das M, Gifford HC, O’Connor JM, Glick SJ (2009) Evaluation of a variable dose acquisition technique for microcalcification and mass detection in digital breast tomosynthesis. Med Phys 36 (6):1976–1984

    Article  PubMed  Google Scholar 

  7. Diekmann F, Freyer M, Diekmann S et al (2009) Evaluation of contrast-enhanced digital mammography. Eur J Radiol 18, in press

  8. Diekmann F, Bick U (2007) Tomosynthesis and contrast-enhanced digital mammography: recent advances in digital mammography. Eur Radiol 17(12):3086–3092

    Article  PubMed  Google Scholar 

  9. Dobbins JT 3rd (2009) Tomosynthesis imaging: at a translational crossroads. Med Phys 36(6):1956–1967

    Article  PubMed  Google Scholar 

  10. Förnvik D, Zackrisson S, Ljungberg O et al (2010) Breast tomosynthesis: accuracy of tumor measurement compared with digital mammography and ultrasonography. Acta Radiol 3:240–247

    Article  Google Scholar 

  11. Fredenberg E, Hemmendorff M, Cederström B et al (2010) Contrast-enhanced spectral mammography with a photon-counting detector. Med Phys 37 (5):2017–2029

    Article  PubMed  Google Scholar 

  12. Gennaro G, Toledano A, Maggio C di et al (2010) Digital breast tomosynthesis versus digital mammography: a clinical performance study. Eur Radiol 20(7):1545–1553

    Article  PubMed  Google Scholar 

  13. Good WF, Abrams GS, Catullo VJ et al (2008) Digital breast tomosynthesis: a pilot observer study. AJR Am J Roentgenol 190:865–869

    Article  PubMed  Google Scholar 

  14. Grant DG (1972) Tomosynthesis: a three dimensional radiographic imaging technique. IEEE Trans Biomed Eng BME 19:20–28

    Article  CAS  Google Scholar 

  15. Gur D, Abrams G, Chough D et al (2009) Digital breast tomosynthesis: observer performance study. AJR Am J Roentgenol 193:586–591

    Article  PubMed  Google Scholar 

  16. Mertelmeier T, Orman J, Haerer W (2006) Adaptation of image quality using various filter setups in the filtered backprojection reconstruction of a breast tomosynthesis prototype device. Porc Soc Photo Opt Instrum Eng 6142:131–142

    Google Scholar 

  17. Niklason LT, Christian BT, Niklason LE et al (1997) Digital tomosynthesis in breast imaging. Radiology 205(2):399–406

    CAS  PubMed  Google Scholar 

  18. Park JM, Franken EA, Garg M et al (2007) Breast tomosynthesis: present considerations and future applications. RadioGraphics 27:231–240

    Article  Google Scholar 

  19. Poplack SP, Tosteson TD, Kogel CA, Nagy HM (2007) Digital breast tomosynthesis: initial experience in 98 women with abnormal digital screening mammography. AJR Am J Roentgenol 189:616–623

    Article  PubMed  Google Scholar 

  20. Rafferty EA (2007) Digital mammography: novel applications. Radiol Clin North Am 45(5):831–843

    Article  PubMed  Google Scholar 

  21. Reiser I, Bian J, Nishikawa RM et al (2009) Comparison of reconstruction algorithms for digital breast tomosynthesis arXiv:0908.2610v1 [physics.med-ph] 9th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, July 9–13, 2007, Lindau, Germany

  22. Reiser I, Nishikawa RM (2010) Task-based assessment of breast tomosynthesis: effect of acquisition parameters and quantum noise. Med Phys 37:1591–1601

    Article  CAS  PubMed  Google Scholar 

  23. Schulz-Wendtland R, Wenkel E, Lell M et al (2006) Experimental phantom lesion detectability study using a digital breast tomosynthesis prototype system. Rofo 178(12):1219–1223

    CAS  PubMed  Google Scholar 

  24. Schulz-Wendtland R, Fuchsjäger M, Wacker T, Hermann KP (2009) Digital mammography: an update. Eur J Radiol 72:258–265

    Article  CAS  PubMed  Google Scholar 

  25. Smith AP, Hall PA, Marcello DM (2004) Emerging technologies in breast cancer. Radiol Manage 26 (4):16–24

    PubMed  Google Scholar 

  26. Smith AP (2003) Fundamentals of digital mammography physics, technology and practical considerations. Radiol Manage 25(5):18–24; 26–31

    PubMed  Google Scholar 

  27. Svahn T, Andersson I, Chakraborty D et al (2010) The diagnostic accuracy of dual-view digital mammography, single-view breast tomosynthesis and a dual-view combination of breast tomosynthesis and digital mammography in a free-response observer performance study. Medical Radiation Physics, Dep Radiat Prot Dosimetry 139(1–3):113–117

    Google Scholar 

  28. Teertstra HJ, Loo CE, van den Bosch MA et al (2010) Breast tomosynthesis in clinical practice: initial results. Eur Radiol 20 (1):16–24

    Article  PubMed  Google Scholar 

  29. Zhao B, Zhou J, Hu YH et al (2009) Experimental validation of a three-dimensional linear system model for breast tomosynthesis. Med Phys 36:240–251

    Article  PubMed  Google Scholar 

  30. Ziedses des Plantes BG (1932) Eine neue Methode zur Differenzierung in der Röntgenographie (Planigraphie). Acta Radiol 13:182–192

    Article  Google Scholar 

Download references

Interessenkonflikt

Die korrespondierende Autorin gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Hellerhoff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hellerhoff, K. Digitale Brusttomosynthese. Radiologe 50, 991–998 (2010). https://doi.org/10.1007/s00117-010-2008-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-010-2008-7

Schlüsselwörter

Keywords

Navigation