Skip to main content
Log in

Kombinierte funktionelle und morphologische Bildgebung bei Sarkomen

Stellenwert für Diagnostik und Therapiemonitoring

Combined functional and morphological imaging of sarcomas

Significance for diagnostics and therapy monitoring

  • Leitthema
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Die 18F-Fluordeoxyglukose-Positronenemissionstomographie (FDG-PET) und insbesondere die Hybridbildgebung als FDG-PET/CT gewinnen beim klinischen Management erwachsener und pädiatrischer Sarkompatienten zunehmend an Bedeutung. Durch die CT-Komponente werden v. a. die Spezifität, aber auch die Sensitivität des Verfahrens weiter gesteigert. Ein Staging von Sarkompatienten einschließlich der Erfassung von Lungenmetastasen ist damit in einem Untersuchungsgang möglich. Die PET/CT wird bei Patienten mit primär ossären und Weichteilsarkomen zur Diagnosestellung, zum Staging und Restaging, zum „metabolischen Tumorgrading“, zur Biopsieplanung, zum Rezidivnachweis sowie zum Therapiemonitoring eingesetzt. Es konnte gezeigt werden, dass der FDG-Uptake des Tumors vor Therapie sowie die Änderungen im FDG-Uptake nach Therapie signifikant mit der histopathologischen Response und dem Überleben der Patienten korrelieren. Damit ermöglichen PET und PET/CT auch prognostische Aussagen. Neue Perspektiven der Hybridbildgebung mit der PET/CT ergeben sich durch die Etablierung neuer Radiotracer sowie durch die kombinierte Untersuchung von Tumormetabolismus und -perfusion. Die hochauflösende MRT bleibt für die lokale Primärdiagnostik sowie zur präoperativen Planung mit Klärung der exakten anatomischen Situation und möglicher Infiltration vaskulärer oder nervaler Strukturen weiter unverzichtbar. Die kontrastverstärkte MRT ist ein wichtiges und gut verfügbares Alternativverfahren zur Rezidivdiagnostik, ganz besonders für nichthypermetabole Tumoren. Dynamische, kontrastverstärkte MRT-Sequenzen gewinnen für das Therapiemonitoring zunehmend an Bedeutung und sollten in prospektiven Studien mit der FDG-PET/CT korreliert werden.

Abstract

18F-fluorodeoxyglucose positron-emission tomography (FDG-PET) and especially hybrid FDG-PET/CT is becoming more and more accepted for the clinical management of adult and pediatric patients with sarcomas. By integrating the CT component the specificity in particular but also the sensitivity of the modality are improved further. With PET/CT a complete staging including the detection of lung metastases is feasible in a single examination. For patients with primary bone and soft tissue sarcomas FDG-PET/CT is utilized for diagnosis, staging and restaging, metabolic tumor grading, guidance of biopsies, detection of tumor recurrence and therapy monitoring. Furthermore, it has been demonstrated that FDG uptake of the tumor prior to treatment and changes of FDG uptake after therapy significantly correlate with histopathologic response and survival of patients. Therefore, PET and PET/CT have a prognostic value. In the future new perspectives of hybrid PET/CT imaging will arise by introducing novel radiotracers and combined functional imaging of tumor metabolism and perfusion. High resolution MRI is essential for local evaluation of the primary tumor and preoperative planning with assessment of possible infiltration of vascular or neural structures. Contrast-enhanced MRI remains a key tool in the diagnosis of recurrent disease, especially in tumors which are not hypermetabolic. Dynamic contrast-enhanced MR sequences can significantly contribute to therapy monitoring. More research is necessary to prospectively compare dynamic contrast-enhanced MRI and FDG-PET/CT for evaluation of local and recurrent diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Antoch G, Herrmann K, Heusner TA et al (2009) Imaging procedures for gastrointestinal stromal tumors. Radiologe 49:1109–1116

    Article  CAS  PubMed  Google Scholar 

  2. Arush MW, Israel O, Postovsky S et al (2007) Positron emission tomography/computed tomography with 18fluoro-deoxyglucose in the detection of local recurrence and distant metastases of pediatric sarcoma. Pediatr Blood Cancer 49:901–905

    Article  PubMed  Google Scholar 

  3. Bastiaannet E, Groen H, Jager PL et al (2004) The value of FDG-PET in the detection, grading and response to therapy of soft tissue and bone sarcomas; a systematic review and meta-analysis. Cancer Treat Rev 30:83–101

    Article  CAS  PubMed  Google Scholar 

  4. Been LB, Suurmeijer AJ, Elsinga PH et al (2007) 18F-fluorodeoxythymidine PET for evaluating the response to hyperthermic isolated limb perfusion for locally advanced soft-tissue sarcomas. J Nucl Med 48:367–372

    CAS  PubMed  Google Scholar 

  5. Beer AJ, Haubner R, Sarbia M et al (2006) Positron emission tomography using [18F]Galacto-RGD identifies the level of integrin alpha(v)beta3 expression in man. Clin Cancer Res 12:3942–3949

    Article  CAS  PubMed  Google Scholar 

  6. Benz MR, Allen-Auerbach MS, Eilber FC et al (2008) Combined assessment of metabolic and volumetric changes for assessment of tumor response in patients with soft-tissue sarcomas. J Nucl Med 49:1579–1584

    Article  PubMed  Google Scholar 

  7. Benz MR, Czernin J, Allen-Auerbach MS et al (2009) FDG-PET/CT imaging predicts histopathologic treatment responses after the initial cycle of neoadjuvant chemotherapy in high-grade soft-tissue sarcomas. Clin Cancer Res 15:2856–2863

    Article  CAS  PubMed  Google Scholar 

  8. Benz MR, Evilevitch V, Allen-Auerbach MS et al (2008) Treatment monitoring by 18F-FDG PET/CT in patients with sarcomas: interobserver variability of quantitative parameters in treatment-induced changes in histopathologically responding and nonresponding tumors. J Nucl Med 49:1038–1046

    Article  PubMed  Google Scholar 

  9. Benz MR, Tchekmedyian N, Eilber FC et al (2009) Utilization of positron emission tomography in the management of patients with sarcoma. Curr Opin Oncol 21:345–351

    Article  PubMed  Google Scholar 

  10. Berger F, Winkler EC, Ruderer C et al (2009) Imaging of soft tissue sarcomas: standard approaches and new strategies. Chirurg 80:175–185

    Article  CAS  PubMed  Google Scholar 

  11. Bestic JM, Peterson JJ, Bancroft LW (2009) Use of FDG PET in staging, restaging, and assessment of therapy response in Ewing sarcoma. Radiographics 29:1487–1500

    Article  PubMed  Google Scholar 

  12. Beyer T, Townsend DW, Brun T et al (2000) A combined PET/CT scanner for clinical oncology. J Nucl Med 41:1369–1379

    CAS  PubMed  Google Scholar 

  13. Blankenberg FG (2008) In vivo imaging of apoptosis. Cancer Biol Ther 7:1525–1532

    Article  CAS  PubMed  Google Scholar 

  14. Blankenberg FG (2008) Monitoring of treatment-induced apoptosis in oncology with PET and SPECT. Curr Pharm Des 14:2974–2982

    Article  CAS  PubMed  Google Scholar 

  15. Bredella MA, Caputo GR, Steinbach LS (2002) Value of FDG positron emission tomography in conjunction with MR imaging for evaluating therapy response in patients with musculoskeletal sarcomas. AJR Am J Roentgenol 179:1145–1150

    PubMed  Google Scholar 

  16. Brenner W, Friedrich RE, Gawad KA et al (2006) Prognostic relevance of FDG PET in patients with neurofibromatosis type-1 and malignant peripheral nerve sheath tumours. Eur J Nucl Med Mol Imaging 33:428–432

    Article  PubMed  Google Scholar 

  17. Buck AK, Herrmann K, Buschenfelde CM et al (2008) Imaging bone and soft tissue tumors with the proliferation marker [18F]fluorodeoxythymidine. Clin Cancer Res 14:2970–2977

    Article  CAS  PubMed  Google Scholar 

  18. Cobben DC, Elsinga PH, Suurmeijer AJ et al (2004) Detection and grading of soft tissue sarcomas of the extremities with (18)F-3’-fluoro-3’-deoxy-L-thymidine. Clin Cancer Res 10:1685–1690

    Article  CAS  PubMed  Google Scholar 

  19. Cuenod CA, Fournier L, Balvay D et al (2006) Tumor angiogenesis: pathophysiology and implications for contrast-enhanced MRI and CT assessment. Abdom Imaging 31:188–193

    Article  CAS  PubMed  Google Scholar 

  20. Daldrup-Link HE, Franzius C, Link TM et al (2001) Whole-body MR imaging for detection of bone metastases in children and young adults: comparison with skeletal scintigraphy and FDG PET. AJR Am J Roentgenol 177:229–236

    CAS  PubMed  Google Scholar 

  21. Ducatman BS, Scheithauer BW, Piepgras DG et al (1986) Malignant peripheral nerve sheath tumors. A clinicopathologic study of 120 cases. Cancer 57:2006–2021

    Article  CAS  PubMed  Google Scholar 

  22. Eary JF, Conrad EU, Bruckner JD et al (1998) Quantitative [F18]fluorodeoxyglucose positron emission tomography in pretreatment and grading of sarcoma. Clin Cancer Res 4:1215–1220

    CAS  PubMed  Google Scholar 

  23. Eary JF, O’Sullivan F, Powitan Y et al (2002) Sarcoma tumor FDG uptake measured by PET and patient outcome: a retrospective analysis. Eur J Nucl Med Mol Imaging 29:1149–1154

    Article  CAS  PubMed  Google Scholar 

  24. Eilber FC, Brennan MF, Eilber FR et al (2004) Validation of the postoperative nomogram for 12-year sarcoma-specific mortality. Cancer 101:2270–2275

    Article  PubMed  Google Scholar 

  25. Evilevitch V, Weber WA, Tap WD et al (2008) Reduction of glucose metabolic activity is more accurate than change in size at predicting histopathologic response to neoadjuvant therapy in high-grade soft-tissue sarcomas. Clin Cancer Res 14:715–720

    Article  CAS  PubMed  Google Scholar 

  26. Faivre S, Demetri G, Sargent W et al (2007) Molecular basis for sunitinib efficacy and future clinical development. Nat Rev Drug Discov 6:734–745

    Article  CAS  PubMed  Google Scholar 

  27. Federman N, Feig SA (2007) PET/CT in evaluating pediatric malignancies: a clinician’s perspective. J Nucl Med 48:1920–1922

    Article  PubMed  Google Scholar 

  28. Ferner RE, Golding JF, Smith M et al (2008) [18F]2-fluoro-2-deoxy-D-glucose positron emission tomography (FDG PET) as a diagnostic tool for neurofibromatosis 1 (NF1) associated malignant peripheral nerve sheath tumours (MPNSTs): a long-term clinical study. Ann Oncol 19:390–394

    Article  CAS  PubMed  Google Scholar 

  29. Folpe AL, Lyles RH, Sprouse JT et al (2000) (F-18) fluorodeoxyglucose positron emission tomography as a predictor of pathologic grade and other prognostic variables in bone and soft tissue sarcoma. Clin Cancer Res 6:1279–1287

    CAS  PubMed  Google Scholar 

  30. Franzius C, Daldrup-Link HE, Sciuk J et al (2001) FDG-PET for detection of pulmonary metastases from malignant primary bone tumors: comparison with spiral CT. Ann Oncol 12:479–486

    Article  CAS  PubMed  Google Scholar 

  31. Franzius C, Daldrup-Link HE, Wagner-Bohn A et al (2002) FDG-PET for detection of recurrences from malignant primary bone tumors: comparison with conventional imaging. Ann Oncol 13:157–160

    Article  CAS  PubMed  Google Scholar 

  32. Franzius C, Schulte M, Hillmann A et al (2001) Clinical value of positron emission tomography (PET) in the diagnosis of bone and soft tissue tumors. 3rd Interdisciplinary Consensus Conference „PET in oncology“: results of the Bone and Soft Tissue Study Group. Chirurg 72:1071–1077

    Article  CAS  PubMed  Google Scholar 

  33. Franzius C, Sciuk J, Brinkschmidt C et al (2000) Evaluation of chemotherapy response in primary bone tumors with F18 FDG positron emission tomography compared with histologically assessed tumor necrosis. Clin Nucl Med 25:874–881

    Article  CAS  PubMed  Google Scholar 

  34. Franzius C, Sciuk J, Daldrup-Link HE et al (2000) FDG-PET for detection of osseous metastases from malignant primary bone tumours: comparison with bone scintigraphy. Eur J Nucl Med 27:1305–1311

    Article  CAS  PubMed  Google Scholar 

  35. Gambhir SS (2002) Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer 2:683–693

    Article  CAS  PubMed  Google Scholar 

  36. Gerth HU, Juergens KU, Dirksen U et al (2007) Significant benefit of multimodal imaging: PET/CT compared with PET alone in staging and follow-up of patients with Ewing tumors. J Nucl Med 48:1932–1939

    Article  PubMed  Google Scholar 

  37. Gyorke T, Zajic T, Lange A et al (2006) Impact of FDG PET for staging of Ewing sarcomas and primitive neuroectodermal tumours. Nucl Med Commun 27:17–24

    Article  PubMed  Google Scholar 

  38. Hain SF, O’Doherty MJ, Bingham J et al (2003) Can FDG PET be used to successfully direct preoperative biopsy of soft tissue tumours? Nucl Med Commun 24:1139–1143

    Article  CAS  PubMed  Google Scholar 

  39. Hawkins DS, Rajendran JG, Conrad EU 3rd et al (2002) Evaluation of chemotherapy response in pediatric bone sarcomas by [F18]-fluorodeoxy-D-glucose positron emission tomography. Cancer 94:3277–3284

    Article  CAS  PubMed  Google Scholar 

  40. Hawkins DS, Schuetze SM, Butrynski JE et al (2005) [18F]Fluorodeoxyglucose positron emission tomography predicts outcome for Ewing sarcoma family of tumors. J Clin Oncol 23:8828–8834

    Article  PubMed  Google Scholar 

  41. Iagaru A, Chawla S, Menendez L et al (2006) 18F-FDG PET and PET/CT for detection of pulmonary metastases from musculoskeletal sarcomas. Nucl Med Commun 27:795–802

    Article  PubMed  Google Scholar 

  42. Ioannidis JP, Lau J (2003) 18F-FDG PET for the diagnosis and grading of soft-tissue sarcoma: a meta-analysis. J Nucl Med 44:717–724

    PubMed  Google Scholar 

  43. Jemal A, Siegel R, Ward E et al (2008) Cancer statistics, 2008. CA Cancer J Clin 58:71–96

    Article  PubMed  Google Scholar 

  44. Johnson GR, Zhuang H, Khan J et al (2003) Roles of positron emission tomography with fluorine-18-deoxyglucose in the detection of local recurrent and distant metastatic sarcoma. Clin Nucl Med 28:815–820

    Article  PubMed  Google Scholar 

  45. Kasper B, Dietrich S, Dimitrakopoulou-Strauss A et al (2008) Early prediction of therapy outcome in patients with high-risk soft tissue sarcoma using positron emission tomography. Onkologie 31:107–112

    Article  PubMed  Google Scholar 

  46. Kneisl JS, Patt JC, Johnson JC et al (2006) Is PET useful in detecting occult nonpulmonary metastases in pediatric bone sarcomas? Clin Orthop Relat Res 450:101–104

    Article  PubMed  Google Scholar 

  47. Kole AC, Nieweg OE, van Ginkel RJ et al (1997) Detection of local recurrence of soft-tissue sarcoma with positron emission tomography using [18F]fluorodeoxyglucose. Ann Surg Oncol 4:57–63

    Article  CAS  PubMed  Google Scholar 

  48. Kransdorf MJ, Jelinek JS, Moser RP Jr (1993) Imaging of soft tissue tumors. Radiol Clin North Am 31:359–372

    CAS  PubMed  Google Scholar 

  49. Lisle JW, Eary JF, O’Sullivan J et al (2009) Risk assessment based on FDG-PET imaging in patients with synovial sarcoma. Clin Orthop Relat Res 467:1605–1611

    Article  PubMed  Google Scholar 

  50. Lucas JD, O’Doherty MJ, Wong JC et al (1998) Evaluation of fluorodeoxyglucose positron emission tomography in the management of soft-tissue sarcomas. J Bone Joint Surg [Br] 80:441–447

    Google Scholar 

  51. Meyer JS, Nadel HR, Marina N et al (2008) Imaging guidelines for children with Ewing sarcoma and osteosarcoma: a report from the Children’s Oncology Group Bone Tumor Committee. Pediatr Blood Cancer 51:163–170

    Article  PubMed  Google Scholar 

  52. Miles KA, Williams RE (2008) Warburg revisited: imaging tumour blood flow and metabolism. Cancer Imaging 8:81–86

    Article  CAS  PubMed  Google Scholar 

  53. Mukherji SK (2010) Bevacizumab (avastin). AJNR Am J Neuroradiol 31:235–236

    Article  CAS  PubMed  Google Scholar 

  54. Nair N, Ali A, Green AA et al (2000) Response of osteosarcoma to chemotherapy. Evaluation with F18 FDG-PET Scans. Clin Positron Imaging 3:79–83

    Article  PubMed  Google Scholar 

  55. Rajendran JG, Mankoff DA, O’Sullivan F et al (2004) Hypoxia and glucose metabolism in malignant tumors: evaluation by [18F]fluoromisonidazole and [18F]fluorodeoxyglucose positron emission tomography imaging. Clin Cancer Res 10:2245–2252

    Article  CAS  PubMed  Google Scholar 

  56. Repasky E, Issels R (2002) Physiological consequences of hyperthermia: heat, heat shock proteins and the immune response. Int J Hyperthermia 18:486–489

    Article  CAS  PubMed  Google Scholar 

  57. Rosenberg SA, Tepper J, Glatstein E et al (1982) The treatment of soft-tissue sarcomas of the extremities: prospective randomized evaluations of (1) limb-sparing surgery plus radiation therapy compared with amputation and (2) the role of adjuvant chemotherapy. Ann Surg 196:305–315

    Article  CAS  PubMed  Google Scholar 

  58. Schuetze SM, Rubin BP, Vernon C et al (2005) Use of positron emission tomography in localized extremity soft tissue sarcoma treated with neoadjuvant chemotherapy. Cancer 103:339–348

    Article  PubMed  Google Scholar 

  59. Schulte M, Brecht-Krauss D, Heymer B et al (1999) Fluorodeoxyglucose positron emission tomography of soft tissue tumours: is a non-invasive determination of biological activity possible? Eur J Nucl Med 26:599–605

    Article  CAS  PubMed  Google Scholar 

  60. Schulte M, Brecht-Krauss D, Heymer B et al (2000) Grading of tumors and tumorlike lesions of bone: evaluation by FDG PET. J Nucl Med 41:1695–1701

    CAS  PubMed  Google Scholar 

  61. Schulte M, Brecht-Krauss D, Werner M et al (1999) Evaluation of neoadjuvant therapy response of osteogenic sarcoma using FDG PET. J Nucl Med 40:1637–1643

    CAS  PubMed  Google Scholar 

  62. Schwab JH, Boland PJ, Antonescu C et al (2007) Spinal metastases from myxoid liposarcoma warrant screening with magnetic resonance imaging. Cancer 110:1815–1822

    Article  PubMed  Google Scholar 

  63. Schwarzbach M, Willeke F, Dimitrakopoulou-Strauss A et al (1999) Functional imaging and detection of local recurrence in soft tissue sarcomas by positron emission tomography. Anticancer Res 19:1343–1349

    CAS  PubMed  Google Scholar 

  64. Schwarzbach MH, Dimitrakopoulou-Strauss A, Willeke F et al (2000) Clinical value of [18F] fluorodeoxyglucose positron emission tomography imaging in soft tissue sarcomas. Ann Surg 231:380–386

    Article  CAS  PubMed  Google Scholar 

  65. Schwarzbach MH, Hinz U, Dimitrakopoulou-Strauss A et al (2005) Prognostic significance of preoperative [18F]fluorodeoxyglucose (FDG) positron emission tomography (PET) imaging in patients with resectable soft tissue sarcomas. Ann Surg 241:286–294

    Article  PubMed  Google Scholar 

  66. Shields AF, Grierson JR, Dohmen BM et al (1998) Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med 4:1334–1336

    Article  CAS  PubMed  Google Scholar 

  67. Stacchiotti S, Collini P, Messina A et al (2009) High-grade soft-tissue sarcomas: tumor response assessment – pilot study to assess the correlation between radiologic and pathologic response by using RECIST and Choi criteria. Radiology 251:447–456

    Article  PubMed  Google Scholar 

  68. Therasse P, Arbuck SG, Eisenhauer EA et al (2000) New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92:205–216

    Article  CAS  PubMed  Google Scholar 

  69. Toner GC, Hicks RJ (2008) PET for sarcomas other than gastrointestinal stromal tumors. Oncologist 13 [suppl 2]:22–26

  70. Veit-Haibach P, Treyer V, Strobel K et al (2009) Feasibility of integrated CT-liver perfusion in routine FDG-PET/CT. Abdom Imaging [Epub ahead of print]

  71. Viglianti BL, Lora-Michiels M, Poulson JM et al (2009) Dynamic contrast-enhanced magnetic resonance imaging as a predictor of clinical outcome in canine spontaneous soft tissue sarcomas treated with thermoradiotherapy. Clin Cancer Res 15:4993–5001

    Article  PubMed  Google Scholar 

  72. Volker T, Denecke T, Steffen I et al (2007) Positron emission tomography for staging of pediatric sarcoma patients: results of a prospective multicenter trial. J Clin Oncol 25:5435–5441

    Article  PubMed  Google Scholar 

  73. Weber WA, Czernin J, Phelps ME et al (2008) Technology Insight: novel imaging of molecular targets is an emerging area crucial to the development of targeted drugs. Nat Clin Pract Oncol 5:44–54

    Article  CAS  PubMed  Google Scholar 

  74. Weber WA, Figlin R (2007) Monitoring cancer treatment with PET/CT: does it make a difference? J Nucl Med 48 [suppl 1]:36S–44S

    Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Berger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schramm, N., Schlemmer, M., Rist, C. et al. Kombinierte funktionelle und morphologische Bildgebung bei Sarkomen. Radiologe 50, 339–348 (2010). https://doi.org/10.1007/s00117-009-1973-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-009-1973-1

Schlüsselwörter

Keywords

Navigation