Skip to main content

Advertisement

Log in

Bildgebung atherosklerotischer Gefäßwandveränderungen mit der PET/CT

PET/CT imaging of atherosclerotic blood vessel alterations

  • Leitthema
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Die Atherosklerose ist eine chronische, entzündliche Erkrankung der mittleren und großen Gefäße, deren Folgen die häufigste Todesursache in der westlichen Welt darstellen. In diesem Beitrag werden die Möglichkeiten moderner Bildgebungsmodalitäten vorgestellt, die zur Identifikation entzündlicher, so genannter vulnerabler Plaques unterschiedlich gut geeignet sind. Der Schwerpunkt liegt auf der Hybridbildgebungsmethode PET/CT mit einer Übersicht bisheriger Studien und möglicherweise geeigneter neuer Ansätze molekularer Bildgebungsmodalitäten. Es erfolgt eine Darstellung der semiquantitativen Bildanalyse, die durch einen Vergleich von 21 Patienten, die an 2 unterschiedlichen PET/CT-Scannern über einen mittleren Zeitraum von 6,5 Monaten untersucht wurden, untermauert wird. Hier zeigte sich, dass ein Quotient aus der FDG-Aufnahme in der Gefäßwand und der Blutpoolaktivität unabhängig vom verwendeten Scanner ist (TBR1 1,26 vs. TBR2 1,28; p = nicht signifikant).

Abstract

Atherosclerosis is a chronic inflammatory disease of middle sized and large vessels with sequelae comprising the most frequent causes of death in the Western world. Modern imaging modalities are being introduced for the study of atherosclerosis with emphasis on the detection of vulnerable plaques. The hybrid imaging method PET/CT presents advantages for the localization of vulnerable plaques based on the uptake of various molecular imaging agents indicative of inflammatory processes. Using semiquantitative image analysis fluorodeoxyglucose (FDG) uptake in large peripheral vessels has been identified in a series of 21 patients, who were scanned first with the previous generation of PET/CT scanner and subsequently with a new generation apparatus, after a mean interval of 6.5 months. The mean ratio of FDG uptake in the walls of eight large vessels to the blood-pool activity (TBR) was nearly identical in the two PET/CT sessions (TBR1 1.26 versus TBR2 1.28; p=n.s.), indicating independence of the TBR endpoint from the particular instrumentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Abbreviations

CT:

Computertomographie

CTA:

CT-Angiographie

DSA:

Digitale Subtraktionsangiographie

FDG:

18F-Fluordeoxyglukose

ICC:

Intraclass-Korrelationskoeffizient

IVUS:

Intravaskulärer Ultraschall

LAD:

Ramus interventricularis anterior, „left anterior descending (artery)“

MRT:

Magnetresonanztomographie

PET:

Positronenemissionstomographie

ROI:

Region of interest

SUV:

Standardized uptake value

TBR:

Target-background-Ratio

Literatur

  1. Arauz A, Hoyos L, Zenteno M et al (2007) Carotid plaque inflammation detected by 18F-fluorodeoxyglucose-positron emission tomography. Pilot study. Clin Neurol Neurosurg 109:409–412

    Article  PubMed  Google Scholar 

  2. Ben-Haim S, Kupzov E, Tamir A et al (2004) Evaluation of 18F-FDG uptake and arterial wall calcifications using 18F-FDG PET/CT. J Nucl Med 45:1816–1821

    PubMed  Google Scholar 

  3. Blockmans D, Bley T, Schmidt W (2009) Imaging for large-vessel vasculitis. Curr Opin Rheumatol 21:19–28

    Article  PubMed  Google Scholar 

  4. Boggs KP, Rock CO, Jackowski S (1995) Lysophosphatidylcholine and 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine inhibit the CDP-choline pathway of phosphatidylcholine synthesis at the CTP: phosphocholine cytidylyltransferase step. J Biol Chem 270:7757–7764

    Article  CAS  PubMed  Google Scholar 

  5. Bucerius J, Schmaljohann J, Bohm I et al (2008) Feasibility of 18F-fluoromethylcholine PET/CT for imaging of vessel wall alterations in humans – first results. Eur J Nucl Med Mol Imaging 35:815–820

    Article  PubMed  Google Scholar 

  6. Budoff MJ, Shaw LJ, Liu ST et al (2007) Long-term prognosis associated with coronary calcification: observations from a registry of 25,253 patients. J Am Coll Cardiol 49:1860–1870

    Article  PubMed  Google Scholar 

  7. Bural GG, Torigian DA, Chamroonrat W et al (2008) FDG-PET is an effective imaging modality to detect and quantify age-related atherosclerosis in large arteries. Eur J Nucl Med Mol Imaging 35:562–569

    Article  PubMed  Google Scholar 

  8. Cyran C, Saam T, Sourbron S et al (2009) Quantification of arterial wall inflammation in patients with arteriitis using high-resolution DCE-MRI: correlation with 18F-FDG PET/CT. European congress of radiology 2009, March 6th–10th, Vienna, Austria. ECR 19, S1:B-070

  9. Davies MJ (1995) Acute coronary thrombosis – the role of plaque disruption and its initiation and prevention. Eur Heart J 16 [suppl L]:3–7

  10. Falk E, Shah PK, Fuster V (1995) Coronary plaque disruption. Circulation 92:657–671

    CAS  PubMed  Google Scholar 

  11. Fuster V, Badimon L, Badimon JJ et al (1992) The pathogenesis of coronary artery disease and the acute coronary syndromes (2). N Engl J Med 326:310–318

    Article  CAS  PubMed  Google Scholar 

  12. Fuster V, Stein B, Ambrose JA et al (1990) Atherosclerotic plaque rupture and thrombosis. Evolving concepts. Circulation 82:II47–II59

    CAS  PubMed  Google Scholar 

  13. Gronholdt ML, Nordestgaard BG, Schroeder TV et al (2001) Ultrasonic echolucent carotid plaques predict future strokes. Circulation 104:68–73

    Article  CAS  PubMed  Google Scholar 

  14. Hansson GK (2005) Inflammation, atherosclerosis and coronary artery disease. N Engl J Med 352:1685–1695

    Article  CAS  PubMed  Google Scholar 

  15. Iuliano L, Signore A, Vallabajosula S et al (1996) Preparation and biodistribution of 99m technetium labelled oxidized LDL in man. Atherosclerosis 126:131–141

    Article  CAS  PubMed  Google Scholar 

  16. Jaffer FA, Kim DE, Quinti L et al (2007) Optical visualization of cathepsin K activity in atherosclerosis with a novel, protease-activatable fluorescence sensor. Circulation 115:2292–2298

    Article  CAS  PubMed  Google Scholar 

  17. Kato K, Schober O, Ikeda M et al (2009) Evaluation and comparison of (11)C-choline uptake and calcification in aortic and common carotid arterial walls with combined PET/CT. Eur J Nucl Med Mol Imaging 36:1622–1628

    Article  CAS  PubMed  Google Scholar 

  18. Kerwin WS, O’brien KD, Ferguson MS et al (2006) Inflammation in carotid atherosclerotic plaque: a dynamic contrast-enhanced MR imaging study. Radiology 241:459–468

    Article  PubMed  Google Scholar 

  19. Kietselaer BL, Reutelingsperger CP, Heidendal GA et al (2004) Noninvasive detection of plaque instability with use of radiolabeled annexin A5 in patients with carotid-artery atherosclerosis. N Engl J Med 350:1472–1473

    Article  CAS  PubMed  Google Scholar 

  20. Laitinen I, Saraste A, Weidl E et al (2009) Evaluation of alphavbeta3 integrin-targeted positron emission tomography tracer 18F-galacto-RGD for imaging of vascular inflammation in atherosclerotic mice. Circ Cardiovasc Imaging 2:331–338

    Article  PubMed  Google Scholar 

  21. Lees AM, Lees RS, Schoen FJ et al (1988) Imaging human atherosclerosis with 99mTc-labeled low density lipoproteins. Arteriosclerosis 8:461–470

    CAS  PubMed  Google Scholar 

  22. Libby P (2002) Inflammation in atherosclerosis. Nature 420:868–874

    Article  CAS  PubMed  Google Scholar 

  23. Little WC, Constantinescu M, Applegate RJ et al (1988) Can coronary angiography predict the site of a subsequent myocardial infarction in patients with mild-to-moderate coronary artery disease? Circulation 78:1157–1166

    CAS  PubMed  Google Scholar 

  24. Lloyd-Jones D, Adams R, Carnethon M et al (2009) Heart disease and stroke statistics – 2009 update: a report from the American Heart Association statistics committee and stroke statistics subcommittee. Circulation 119:e21–e181

    Article  PubMed  Google Scholar 

  25. Matter CM, Wyss MT, Meier P et al (2006) 18F-choline images murine atherosclerotic plaques ex vivo. Arterioscler Thromb Vasc Biol 26:584–589

    Article  CAS  PubMed  Google Scholar 

  26. Menezes LJ, Kotze CW, Hutton BF et al (2009) Vascular inflammation imaging with 18F-FDG PET/CT: when to image? J Nucl Med 50:854–857

    Article  PubMed  Google Scholar 

  27. Moriwaki H, Matsumoto M, Handa N et al (1995) Functional and anatomic evaluation of carotid atherothrombosis. A combined study of indium 111 platelet scintigraphy and B-mode ultrasonography. Arterioscler Thromb Vasc Biol 15:2234–2240

    CAS  PubMed  Google Scholar 

  28. Naghavi M, Libby P, Falk E et al (2003) From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: part I. Circulation 108:1664–1672

    Article  PubMed  Google Scholar 

  29. Nikolaou K, Knez A, Rist C et al (2006) Accuracy of 64-MDCT in the diagnosis of ischemic heart disease. AJR Am J Roentgenol 187:111–117

    Article  PubMed  Google Scholar 

  30. Nissen SE, Yock P (2001) Intravascular ultrasound: novel pathophysiological insights and current clinical applications. Circulation 103:604–616

    CAS  PubMed  Google Scholar 

  31. Okane K, Ibaraki M, Toyoshima H et al (2006) 18F-FDG accumulation in atherosclerosis: use of CT and MR co-registration of thoracic and carotid arteries. Eur J Nucl Med Mol Imaging 33:589–594

    Article  PubMed  Google Scholar 

  32. Paulmier B, Duet M, Khayat R et al (2008) Arterial wall uptake of fluorodeoxyglucose on PET imaging in stable cancer disease patients indicates higher risk for cardiovascular events. J Nucl Cardiol 15:209–217

    Article  PubMed  Google Scholar 

  33. Rominger A, Saam T, Vogl E et al (2010) In vivo imaging of macrophage activity in the coronary arteries using 68-Ga-DOTATATE PET/CT: correlation with coronary calcium burden and risk factors. J Nucl Med, in press

  34. Rominger A, Saam T, Wolpers S et al (2009) 18F-FDG PET/CT identifies patients at risk for future vascular events in an otherwise asymptomatic cohort with neoplastic disease. J Nucl Med 50:1611–1620

    Article  PubMed  Google Scholar 

  35. Rudd JH, Myers KS, Bansilal S et al (2008) Atherosclerosis inflammation imaging with 18F-FDG PET: carotid, iliac, and femoral uptake reproducibility, quantification methods and recommendations. J Nucl Med 49:871–878

    Article  PubMed  Google Scholar 

  36. Rudd JH, Myers KS, Bansilal S et al (2007) (18)Fluorodeoxyglucose positron emission tomography imaging of atherosclerotic plaque inflammation is highly reproducible: implications for atherosclerosis therapy trials. J Am Coll Cardiol 50:892–896

    Article  PubMed  Google Scholar 

  37. Rudd JH, Warburton EA, Fryer TD et al (2002) Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation 105:2708–2711

    Article  CAS  PubMed  Google Scholar 

  38. Saam T, Ferguson MS, Yarnykh VL et al (2005) Quantitative evaluation of carotid plaque composition by in vivo MRI. Arterioscler Thromb Vasc Biol 25:234–239

    Article  CAS  PubMed  Google Scholar 

  39. Saam T, Hatsukami TS, Takaya N et al (2007) The vulnerable, or high-risk, atherosclerotic plaque: noninvasive MR imaging for characterization and assessment. Radiology 244:64–77

    Article  PubMed  Google Scholar 

  40. Saam T, Rominger A, Wolpers S et al (n d) Association of inflammation of the left coronary artery with cardiovascular risk factors, plaque burden and pericardial fat volume: a PET/CT study. EJNMMI (under review)

  41. Tahara N, Kai H, Ishibashi M et al (2006) Simvastatin attenuates plaque inflammation: evaluation by fluorodeoxyglucose positron emission tomography. J Am Coll Cardiol 48:1825–1831

    Article  CAS  PubMed  Google Scholar 

  42. Tahara N, Kai H, Yamagishi S et al (2007) Vascular inflammation evaluated by [18F]-fluorodeoxyglucose positron emission tomography is associated with the metabolic syndrome. J Am Coll Cardiol 49:1533–1539

    Article  CAS  PubMed  Google Scholar 

  43. Tatsumi M, Cohade C, Nakamoto Y et al (2003) Fluorodeoxyglucose uptake in the aortic wall at PET/CT: possible finding for active atherosclerosis. Radiology 229:831–837

    Article  PubMed  Google Scholar 

  44. Tawakol A, Migrino RQ, Bashian GG et al (2006) In vivo 18F-fluorodeoxyglucose positron emission tomography imaging provides a noninvasive measure of carotid plaque inflammation in patients. J Am Coll Cardiol 48:1818–1824

    Article  PubMed  Google Scholar 

  45. Tawakol A, Migrino RQ, Hoffmann U et al (2005) Noninvasive in vivo measurement of vascular inflammation with F-18 fluorodeoxyglucose positron emission tomography. J Nucl Cardiol 12:294–301

    Article  PubMed  Google Scholar 

  46. Virgolini I, Muller C, Fitscha P et al (1990) Radiolabelling autologous monocytes with 111-indium-oxine for reinjection in patients with atherosclerosis. Prog Clin Biol Res 355:271–280

    CAS  PubMed  Google Scholar 

  47. Virgolini I, Rauscha F, Lupattelli G et al (1991) Autologous low-density lipoprotein labelling allows characterization of human atherosclerotic lesions in vivo as to presence of foam cells and endothelial coverage. Eur J Nucl Med 18:948–951

    CAS  PubMed  Google Scholar 

  48. Virmani R, Burke AP, Farb A et al (2002) Pathology of the unstable plaque. Prog Cardiovasc Dis 44:349–356

    Article  PubMed  Google Scholar 

  49. Williams G, Kolodny GM (2009) Retrospective study of coronary uptake of 18F-fluorodeoxyglucose in association with calcification and coronary artery disease: a preliminary study. Nucl Med Commun 30:287–291

    Article  CAS  PubMed  Google Scholar 

  50. Wu YW, Kao HL, Chen MF et al (2007) Characterization of plaques using 18F-FDG PET/CT in patients with carotid atherosclerosis and correlation with matrix metalloproteinase-1. J Nucl Med 48:227–233

    CAS  PubMed  Google Scholar 

  51. Wykrzykowska J, Lehman S, Williams G et al (2009) Imaging of inflamed and vulnerable plaque in coronary arteries with 18F-FDG PET/CT in patients with suppression of myocardial uptake using a low-carbohydrate, high-fat preparation. J Nucl Med 50:563–568

    Article  PubMed  Google Scholar 

  52. Yun M, Jang S, Cucchiara A et al (2002) 18F FDG uptake in the large arteries: a correlation study with the atherogenic risk factors. Semin Nucl Med 32:70–76

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Saam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rominger, A., Rist, C., Nikolaou, K. et al. Bildgebung atherosklerotischer Gefäßwandveränderungen mit der PET/CT. Radiologe 50, 355–365 (2010). https://doi.org/10.1007/s00117-009-1969-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-009-1969-x

Schlüsselwörter

Keywords

Navigation