Skip to main content
Log in

Funktionelle Magnetresonanztomographie bei ultrahohen Feldern

Functional magnetic resonance imaging with ultra-high fields

  • Leitthema
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Die funktionelle Magnetresonanztomographie (fMRT) stellt zurzeit die wichtigste Methode zur nichtinvasiven Funktionslokalisation im Gehirn dar. Mit der Verfügbarkeit von MRT-Geräten mit Magnetfeldstärken von 4 Tesla (T) und darüber ergeben sich neue Möglichkeiten, mittels fMRT die neuronale Aktivität in bislang unerreichter Genauigkeit zu untersuchen. In diesem Artikel zeigen wir anhand mehrerer Studien bei 7 T, in wieweit die Zugewinne an Sensitivität und Spezifität verwendet werden können, um die bisherigen Grenzen der fMRT-Auflösung in räumlicher und zeitlicher Hinsicht auszuweiten. Die neuen Herausforderungen, die mit dem Schritt zu ultrahohen Magnetfeldern einhergehen, werden dabei ebenso diskutiert wie mögliche Ansätze zu deren Lösung.

Abstract

Functional magnetic resonance imaging (fMRI) is currently the primary method for non-invasive functional localization in the brain. With the emergence of MR systems with field strengths of 4 Tesla and above, neuronal activation may be studied with unprecedented accuracy. In this article we present different approaches to use the improved sensitivity and specificity for expanding current fMRT resolution limits in space and time based on several 7 Tesla studies. In addition to the challenges that arise with ultra-high magnetic fields possible solutions will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A 87(24):9868–9872

    Article  CAS  PubMed  Google Scholar 

  2. Bandettini PA, Wong EC, Hinks RS et al (1992) Time course EPI of human brain function during task activation. Magn Reson Med 25(2):390–397

    Article  CAS  PubMed  Google Scholar 

  3. Kwong KK, Belliveau JW, Chesler DA et al (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A 89(12):5675–5679

    Article  CAS  PubMed  Google Scholar 

  4. Schad LR (2002) Functional magnetic resonance tomography (fMRI). 1: Basic principles and measuring techniques. Radiologe 42(8):659–666; quiz 667–669

    Article  CAS  PubMed  Google Scholar 

  5. Triantafyllou C, Hoge RD, Krueger G et al (2005) Comparison of physiological noise at 1.5 T, 3 T and 7 T and optimization of fMRI acquisition parameters. Neuroimage 26(1):243–250

    Article  CAS  PubMed  Google Scholar 

  6. Gati JS, Menon RS, Ugurbil K, Rutt BK (1997) Experimental determination of the BOLD field strength dependence in vessels and tissue. Magn Reson Med 38(2):296–302

    Article  CAS  PubMed  Google Scholar 

  7. Van der Zwaag W, Francis S, Head K et al (2009) fMRI at 1.5, 3 and 7 T: characterising BOLD signal changes. Neuroimage 47(4):1425–1434

    Article  Google Scholar 

  8. Pruessmann KP (2004) Parallel imaging at high field strength: synergies and joint potential. Top Magn Reson Imaging 15(4):237–244

    Article  PubMed  Google Scholar 

  9. Robinson S, Windischberger C, Rauscher A, Moser E (2004) Optimized 3 T EPI of the amygdalae. Neuroimage 22(1):203–210

    Article  CAS  PubMed  Google Scholar 

  10. Robinson SD, Pripfl J, Bauer H, Moser E (2008) The impact of EPI voxel size on SNR and BOLD sensitivity in the anterior medio-temporal lobe: a comparative group study of deactivation of the default mode. Magma 21(4):279–290

    Article  CAS  PubMed  Google Scholar 

  11. Kruger G, Kastrup A, Glover GH (2001) Neuroimaging at 1.5 T and 3.0 T: comparison of oxygenation-sensitive magnetic resonance imaging. Magn Reson Med 45(4):595–604

    Article  CAS  PubMed  Google Scholar 

  12. Windischberger C, Langenberger H, Sycha T et al (2002) On the origin of respiratory artifacts in BOLD-EPI of the human brain. Magn Reson Imaging 20(8):575–582

    Article  PubMed  Google Scholar 

  13. Hu X, Le TH, Parrish T, Erhard P (1995) Retrospective estimation and correction of physiological fluctuation in functional MRI. Magn Reson Med 34(2):201–212

    Article  CAS  PubMed  Google Scholar 

  14. Glover GH, Li TQ, Ress D (2000) Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magn Reson Med 44(1):162–167

    Article  CAS  PubMed  Google Scholar 

  15. Sullivan JE 3rd, Detre JA (2005) Functional magnetic resonance imaging in the treatment of epilepsy. Curr Neurol Neurosci Rep 5(4):299–306

    Article  PubMed  Google Scholar 

  16. Winkler D, Strauss G, Hesse S et al (2004) Preoperative imaging as the basis for image-guided neurosurgery. Radiologe 44(7):723–732; quiz 733–734

    Article  CAS  PubMed  Google Scholar 

  17. Beisteiner R, Lanzenberger R, Novak K et al (2000) Improvement of presurgical patient evaluation by generation of functional magnetic resonance risk maps. Neurosci Lett 290(1):13–16

    Article  CAS  PubMed  Google Scholar 

  18. Yousry TA, Schmid UD, Alkadhi H et al (1997) Localization of the motor hand area to a knob on the precentral gyrus. A new landmark. Brain 120(Pt 1):141–157

    Article  PubMed  Google Scholar 

  19. Windischberger C, Cunnington R, Lamm C et al (2008) Time-resolved analysis of fMRI signal changes using brain activation movies. J Neurosci Methods 169(1):222–230

    Article  PubMed  Google Scholar 

  20. Dale AM, Buckner RL (1997) Selective averaging of rapidly presented individual trials using fMRI. Hum Brain Mapp 5(5):329–340

    Article  Google Scholar 

  21. Cunnington R, Iansek R, Bradshaw JL, Phillips JG (1995) Movement-related potentials in Parkinson’s disease. Presence and predictability of temporal and spatial cues. Brain 118(Pt 4):935–950

    Article  PubMed  Google Scholar 

  22. Kim CY, Blake R (2005) Psychophysical magic: rendering the visible „invisible“. Trends Cogn Sci 9(8):381–388

    Article  PubMed  Google Scholar 

  23. Enns JT, Di Lollo V (2000) What’s new in visual masking? Trends Cogn Sci 4(9):345–352

    Article  PubMed  Google Scholar 

  24. Maxwell JS, Davidson RJ (2004) Unequally masked: Indexing differences in the perceptual salience of „unseen“ facial expressions. Cogn Emotion 18:1009–1026

    Article  Google Scholar 

  25. Wiens S, Fransson P, Dietrich T et al (2004) Keeping it short: a comparison of methods for brief picture presentation. Psychol Sci 15(4):282–285

    Article  PubMed  Google Scholar 

  26. Fischmeister FPS, Leodolter U, Windischberger C et al (2009) Multiple serial picture presentation with millisecond resolution using a three-way LCD tachistoscope. J Neurosci Methods, submitted

  27. Dehaene S, Changeux JP, Naccache L et al (2006) Conscious, preconscious, and subliminal processing: a testable taxonomy. Trends Cogn Sci 10(5):204–211

    Article  PubMed  Google Scholar 

  28. Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34(4):537–541

    Article  CAS  PubMed  Google Scholar 

  29. Beckmann CF, DeLuca M, Devlin JT, Smith SM (2005) Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci 360(1457):1001–113

    Article  PubMed  Google Scholar 

  30. Damoiseaux JS, Rombouts SA, Barkhof F et al (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci U S A 103(37):13848–13853

    Article  CAS  PubMed  Google Scholar 

  31. Windischberger C, Gerstl F, Fischmeister FPS et al (2009) A comparison of 8-channel and 24-channel coils at 7 Tesla based on resting-state fMRI. Magn Reson Mater Phys 22(S1):258–259

    Google Scholar 

  32. Moser E, Derntl B, Gerstl F et al (2009) Functional MR-imaging of human emotions: towards single subject diagnosis. IFMBE Proceedings WC 2009, „World Congress on Medical Physics and Biomedical Engineering“ 25(II):19–22, 2009

Download references

Danksagung

Die hier vorgestellten Studien wurden vom Fonds zur Förderung der wissenschaftlichen Forschung (FWF P19176-B02), dem Jubiläumsfonds der Österreichischen Nationalbank (OeNB 12982) sowie durch eine Forschungskooperation mit Siemens Medical (Erlangen, Deutschland) finanziell unterstützt.

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Windischberger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Windischberger, C., Fischmeister, F., Schöpf, V. et al. Funktionelle Magnetresonanztomographie bei ultrahohen Feldern. Radiologe 50, 144–151 (2010). https://doi.org/10.1007/s00117-009-1897-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-009-1897-9

Schlüsselwörter

Keywords

Navigation