Zusammenfassung
Die funktionelle Magnetresonanztomographie (fMRT) stellt zurzeit die wichtigste Methode zur nichtinvasiven Funktionslokalisation im Gehirn dar. Mit der Verfügbarkeit von MRT-Geräten mit Magnetfeldstärken von 4 Tesla (T) und darüber ergeben sich neue Möglichkeiten, mittels fMRT die neuronale Aktivität in bislang unerreichter Genauigkeit zu untersuchen. In diesem Artikel zeigen wir anhand mehrerer Studien bei 7 T, in wieweit die Zugewinne an Sensitivität und Spezifität verwendet werden können, um die bisherigen Grenzen der fMRT-Auflösung in räumlicher und zeitlicher Hinsicht auszuweiten. Die neuen Herausforderungen, die mit dem Schritt zu ultrahohen Magnetfeldern einhergehen, werden dabei ebenso diskutiert wie mögliche Ansätze zu deren Lösung.
Abstract
Functional magnetic resonance imaging (fMRI) is currently the primary method for non-invasive functional localization in the brain. With the emergence of MR systems with field strengths of 4 Tesla and above, neuronal activation may be studied with unprecedented accuracy. In this article we present different approaches to use the improved sensitivity and specificity for expanding current fMRT resolution limits in space and time based on several 7 Tesla studies. In addition to the challenges that arise with ultra-high magnetic fields possible solutions will be discussed.
Literatur
Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A 87(24):9868–9872
Bandettini PA, Wong EC, Hinks RS et al (1992) Time course EPI of human brain function during task activation. Magn Reson Med 25(2):390–397
Kwong KK, Belliveau JW, Chesler DA et al (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A 89(12):5675–5679
Schad LR (2002) Functional magnetic resonance tomography (fMRI). 1: Basic principles and measuring techniques. Radiologe 42(8):659–666; quiz 667–669
Triantafyllou C, Hoge RD, Krueger G et al (2005) Comparison of physiological noise at 1.5 T, 3 T and 7 T and optimization of fMRI acquisition parameters. Neuroimage 26(1):243–250
Gati JS, Menon RS, Ugurbil K, Rutt BK (1997) Experimental determination of the BOLD field strength dependence in vessels and tissue. Magn Reson Med 38(2):296–302
Van der Zwaag W, Francis S, Head K et al (2009) fMRI at 1.5, 3 and 7 T: characterising BOLD signal changes. Neuroimage 47(4):1425–1434
Pruessmann KP (2004) Parallel imaging at high field strength: synergies and joint potential. Top Magn Reson Imaging 15(4):237–244
Robinson S, Windischberger C, Rauscher A, Moser E (2004) Optimized 3 T EPI of the amygdalae. Neuroimage 22(1):203–210
Robinson SD, Pripfl J, Bauer H, Moser E (2008) The impact of EPI voxel size on SNR and BOLD sensitivity in the anterior medio-temporal lobe: a comparative group study of deactivation of the default mode. Magma 21(4):279–290
Kruger G, Kastrup A, Glover GH (2001) Neuroimaging at 1.5 T and 3.0 T: comparison of oxygenation-sensitive magnetic resonance imaging. Magn Reson Med 45(4):595–604
Windischberger C, Langenberger H, Sycha T et al (2002) On the origin of respiratory artifacts in BOLD-EPI of the human brain. Magn Reson Imaging 20(8):575–582
Hu X, Le TH, Parrish T, Erhard P (1995) Retrospective estimation and correction of physiological fluctuation in functional MRI. Magn Reson Med 34(2):201–212
Glover GH, Li TQ, Ress D (2000) Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magn Reson Med 44(1):162–167
Sullivan JE 3rd, Detre JA (2005) Functional magnetic resonance imaging in the treatment of epilepsy. Curr Neurol Neurosci Rep 5(4):299–306
Winkler D, Strauss G, Hesse S et al (2004) Preoperative imaging as the basis for image-guided neurosurgery. Radiologe 44(7):723–732; quiz 733–734
Beisteiner R, Lanzenberger R, Novak K et al (2000) Improvement of presurgical patient evaluation by generation of functional magnetic resonance risk maps. Neurosci Lett 290(1):13–16
Yousry TA, Schmid UD, Alkadhi H et al (1997) Localization of the motor hand area to a knob on the precentral gyrus. A new landmark. Brain 120(Pt 1):141–157
Windischberger C, Cunnington R, Lamm C et al (2008) Time-resolved analysis of fMRI signal changes using brain activation movies. J Neurosci Methods 169(1):222–230
Dale AM, Buckner RL (1997) Selective averaging of rapidly presented individual trials using fMRI. Hum Brain Mapp 5(5):329–340
Cunnington R, Iansek R, Bradshaw JL, Phillips JG (1995) Movement-related potentials in Parkinson’s disease. Presence and predictability of temporal and spatial cues. Brain 118(Pt 4):935–950
Kim CY, Blake R (2005) Psychophysical magic: rendering the visible „invisible“. Trends Cogn Sci 9(8):381–388
Enns JT, Di Lollo V (2000) What’s new in visual masking? Trends Cogn Sci 4(9):345–352
Maxwell JS, Davidson RJ (2004) Unequally masked: Indexing differences in the perceptual salience of „unseen“ facial expressions. Cogn Emotion 18:1009–1026
Wiens S, Fransson P, Dietrich T et al (2004) Keeping it short: a comparison of methods for brief picture presentation. Psychol Sci 15(4):282–285
Fischmeister FPS, Leodolter U, Windischberger C et al (2009) Multiple serial picture presentation with millisecond resolution using a three-way LCD tachistoscope. J Neurosci Methods, submitted
Dehaene S, Changeux JP, Naccache L et al (2006) Conscious, preconscious, and subliminal processing: a testable taxonomy. Trends Cogn Sci 10(5):204–211
Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34(4):537–541
Beckmann CF, DeLuca M, Devlin JT, Smith SM (2005) Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci 360(1457):1001–113
Damoiseaux JS, Rombouts SA, Barkhof F et al (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci U S A 103(37):13848–13853
Windischberger C, Gerstl F, Fischmeister FPS et al (2009) A comparison of 8-channel and 24-channel coils at 7 Tesla based on resting-state fMRI. Magn Reson Mater Phys 22(S1):258–259
Moser E, Derntl B, Gerstl F et al (2009) Functional MR-imaging of human emotions: towards single subject diagnosis. IFMBE Proceedings WC 2009, „World Congress on Medical Physics and Biomedical Engineering“ 25(II):19–22, 2009
Danksagung
Die hier vorgestellten Studien wurden vom Fonds zur Förderung der wissenschaftlichen Forschung (FWF P19176-B02), dem Jubiläumsfonds der Österreichischen Nationalbank (OeNB 12982) sowie durch eine Forschungskooperation mit Siemens Medical (Erlangen, Deutschland) finanziell unterstützt.
Interessenkonflikt
Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Windischberger, C., Fischmeister, F., Schöpf, V. et al. Funktionelle Magnetresonanztomographie bei ultrahohen Feldern. Radiologe 50, 144–151 (2010). https://doi.org/10.1007/s00117-009-1897-9
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00117-009-1897-9