Skip to main content
Log in

PET und PET-CT maligner Tumoren des exokrinen Pankreas

PET and PET-CT of malignant tumors of the exocrine pancreas

  • Leitthema
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Adenokarzinome des Pankreas stellen den überwiegenden Teil (>95%) aller malignen Pankreastumoren dar. Sie entstehen aus malignen Entartungen des exokrinen Anteils der Bauchspeicheldrüse. Zystische, azinäre Tumoren sind deutlich seltener und gehen von sekretbildenden Parenchymzellen des Pankreas aus. Auf endokrine Pankreastumoren wird in diesem Kontext nicht eingegangen.

Abstract

Adenocarcinomas of the pancreas represent the majority (>95%) of all malignant pancreatic tumors. They are formed from malignant degeneration of the exocrine part of the pancreas. Cystic acinar tumors are much rarer and originate from secretion-producing parenchymal cells of the pancreas. Endocrine tumors of the pancreas will not be dealt with in this context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Adler G, Seufferlein T, Bischoff SC et al (2007) S3-Leitlinie „Exokrines Pankreaskarzinom“ 2007. Ergebnis einer evidenzbasierten Konsensuskonferenz. J Clin Gastroenterol 45:1–37

    Google Scholar 

  2. Amthauer H, Ruf J (2008) Nuclear medical methods for the diagnosis of pancreatic cancer: positron emission tomography. Recent Results Cancer Res 177:15–26

    Article  PubMed  CAS  Google Scholar 

  3. Bang S, Chung HW, Park SW et al (2006) The clinical usefulness of 18-fluorodeoxyglucose positron emission tomography in the differential diagnosis, staging and response evaluation after concurrent chemoradiotherapy for pancreatic cancer. J Clin Gastroenterol 40:923–929

    Article  PubMed  Google Scholar 

  4. Bean MJ, Fishman EK (2005) Focal FDG uptake in a pancreatic lipoma mimicking malignancy. J Comput Assist Tomogr 29:475–476

    Article  PubMed  Google Scholar 

  5. Borbath I et al (2005) Preoperative assessment of pancreatic tumors using magnetic resonance imaging, endoscopic ultrasonography positron emission tomography and laparoscopy. Pancreatology 5:553–561

    Article  PubMed  Google Scholar 

  6. Czernin J, Auerbach MA (2005) Clinical PET/CT imaging: promises and misconceptions. Nuklearmedizin 44:S18–S23

    PubMed  Google Scholar 

  7. Czernin J, Allen-Auerbach M, Schelbert HR (2007) Improvements in cancer staging with PET/CT: literature-based evidence as of september 2006. J Nucl Med 48:78–88

    Google Scholar 

  8. Diederichs C (1998) Pankreas-Karzinome. In: Wieler HJ (Hrsg) PET in der klinischen Onkologie. Steinkopff, Darmstadt

  9. Diederichs C, Staib L, Vogel J et al (2000) Values and limitations of 18F-fluorodeoxyglucose positron emission tomography with preoperative evaluation of patients with pancreatic masses. Pancreas 20:109–116

    Article  PubMed  CAS  Google Scholar 

  10. Diederichs C (2000) Pancreas. In: Bender H, Palmedo H, Valk PE, Biersack HJ (eds) An atlas of clinical PET in oncology. Springer, Berlin Heidelberg New York, pp 133–152

  11. Diederichs CG, Staib L, Glasbrenner B et al (1999) F-18 Fluorodeoxyglucose (FDG) and C-reactive protein (CRP). Clin Positron Imaging 2:131–136

    Article  PubMed  Google Scholar 

  12. Diederichs CG, Staib L, Vogel J et al (2000) Values and limitations of 18F-fluorodeoxyglucose-positron-emission tomography with preoperative evaluation of patients with pancreatic masses. Pancreas 20:109–116

    Article  PubMed  CAS  Google Scholar 

  13. Fantin VR, St-Pierre J, Leder P (2006) Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology and tumor maintenance. Cancer Cell 9:425–434

    Article  PubMed  CAS  Google Scholar 

  14. Fletcher JW, Djulbegovic B, Soares HP et al (2008) Recommendations on the use of 18F-FDG PET in oncology. J Nucl Med 49:480–508

    Article  PubMed  Google Scholar 

  15. Fröhlich A, Diederichs CG, Staib L et al (1999) Detection of liver metastases from pancreatic cancer using FDG PET. J Nucl Med 40:250–255

    PubMed  Google Scholar 

  16. Gambhir SS, Czernin J, Schwimmer J et al (2001) A tabulated summary of the FDG PET literature. J Nucl Med 42:1S–93S

    PubMed  CAS  Google Scholar 

  17. Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nature, Cancer 4:891–899

    Google Scholar 

  18. Gillies RJ, Robey I, Gatenby RA (2008) Causes and consequences of increased glucose metabolism of cancers. J Nucl Med 49:24S–42S

    Article  PubMed  CAS  Google Scholar 

  19. Heinrich S, Goerres GW, Schafer M et al (2005) Positron emission tomography/computed tomography influences on the management of resectable pancreatic cancer and its cost-effectiveness. Ann Surg 242:235–243

    Article  PubMed  Google Scholar 

  20. Herrmann K, Eckel F, Schmidt S et al (2008) In vivo characterization of proliferation for discriminating cancer from pancreatic pseudotumors. J Nucl Med 49:1437–1444

    Article  PubMed  CAS  Google Scholar 

  21. Jemal A, Siegel R, Ward E et al (2007) Cancer statistics. CA Cancer J Clin 57:43–66

    Article  PubMed  Google Scholar 

  22. Koyama K, Okamura T, Kawabe J et al (2001) Diagnostic usefulness of FDG PET for pancreatic mass lesions. Ann Nucl Med 15:217–224

    Article  PubMed  CAS  Google Scholar 

  23. Lytras D, Connor S, Bosonnet L et al (2005) Positron emission tomography does not add to computed tomography for the diagnosis and staging of pancreatic cancer. Dig Surg 22:55–61

    Article  PubMed  CAS  Google Scholar 

  24. Maisey N, Webb A, Flux G et al (2000) FDG-PET in the prediction of survival of patients with cancer of the pancreas: a pilot study. Br J Cancer 83:287–293

    Article  PubMed  CAS  Google Scholar 

  25. Malesci A, Balzarini L, Chiti A et al (2004) Pancreatic cancer or chronic pancreatitis? An answer from PET/MRI image fusion. Eur J Nucl Med Mol Imaging 31:1352

    Article  PubMed  Google Scholar 

  26. Mansour JC, Schwartz L, Pandit-Taskar N et al (2006) The utility of F-18 fluorodeoxyglucose whole body PET imaging for determining malignancy in cystic lesions of the pancreas. J Gastrointest Surg 10:1354–1360

    Article  PubMed  Google Scholar 

  27. Papos M, Takacs T (2002) The possible role of F-18 FDG positron emission tomography in the differential diagnosis of focal pancreatic lesions. Clin Nucl Med 27:197–201

    Article  PubMed  Google Scholar 

  28. Rasmussen I, Sorensen J (2004) Is positron emission tomography using 18F-fluorodeoxyglucose and 11C-acetate valuable in diagnosing indeterminate pancreatic masses? Scand J Surg 93:191–197

    PubMed  CAS  Google Scholar 

  29. Reske SN, Kotzerke J (2001) FDG-PET for clinical use. Results of the 3rd German interdisciplinary consensus conference, „Onko-PET III“, 21 July and 19 September 2000. Eur J Nucl Med 28:1707–1723

    Article  PubMed  CAS  Google Scholar 

  30. Ruf J, Lopez Hanninen E, Oettle H et al (2005) Detection of recurrent pancreatic cancer: comparison of FDG-PET with CT/MRI. Pancreatology 5:266–272

    Article  PubMed  Google Scholar 

  31. Sahani DV, Kalva SP, Fischman AJ et al (2005) Detection of liver metastases from adenocarcinoma of the colon and pancreas: comparison of mangafodipir trisodium-enhanced liver MRI and whole-body FDG PET. AJR 185:239–246

    PubMed  Google Scholar 

  32. Schick V, Franzius C, Beyna T et al (2008) Diagnostic impact of 18F-FDG PET-CT evaluating solid pancreatic lesions versus endosonography, endoscopic retrograde cholangio-pancreatography with intraductal ultrasonography and abdominal untrasound. Eur J Nucl Med Mol Imaging 35:1775–1785

    Article  PubMed  Google Scholar 

  33. Shreve PD (1998) Focal fluorine-18 fluorodeoxyglucose accumulation in inflammatory pancreatic disease. Eur J Nucl Med 25:259–264

    Article  PubMed  CAS  Google Scholar 

  34. Sperti C, Bissoli S, Pasquali C et al (2007) 18-fluorodeoxyglucose positron emission tomography enhances computed tomography diagnosis of malignant intraductal papillary mucinous neoplasms of the pancreas. Ann Surg 246:932–937

    Article  PubMed  Google Scholar 

  35. Strobel K, Heinrich S, Bhure U et al (2008) Contrast-enhanced 18F-FDG PET/CT: 1-stop-shop imaging for assessing the resectability of pancreatic cancer. J Nucl Med 49:1408–1413

    Article  PubMed  Google Scholar 

  36. Valinas R, Barrier A (2002) 18F-fluorodeoxyglucose positron emission tomography for characterization and initial staging of pancreatic tumors. Gastroenterol Clin Biol 26:888–892

    PubMed  Google Scholar 

  37. Van Kouwen MC, Jansen JB, van Goor H et al (2005) FDG-PET is able to detect pancreatic carcinoma in chronic pancreatitis. Eur J Nucl Med Mol Imaging 32:399–404

    Article  Google Scholar 

  38. Warburg O (1923) Versuche an überlebendem Carcinomgewebe. Biochem Z 142:317–333

    CAS  Google Scholar 

  39. Warburg O (1931) The metabolism of tumors. Richard R. Smith, New York

  40. Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    Article  PubMed  CAS  Google Scholar 

  41. Yokoyama Y, Nagino M, Hiromatsu T et al (2005) Intense PET signal in the degenerative necrosis superimposed on chronic pancreatitis. Pancreas 31:192–194

    Article  PubMed  Google Scholar 

  42. Yoshioka M, Sato T, Furuya T et al (2003) Positron emission tomography with 2-deoxy-2-[18F]fluoro-D-glucose for diagnosis of intraductal papillary mucinous tumor of the pancreas with parenchymal invasion. J Gastroenterol 38:1189–1193

    Article  PubMed  Google Scholar 

  43. Yoshioka M, Sato T, Furuya T et al (2004) Role of positron emission tomography with 2-deoxy-2 [18F]fluoro-D-glucose in evaluating the effects of arterial infusion chemotherapy and radiotherapy on pancreatic cancer. J Gastroenterol 39:50–55

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.N. Reske.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reske, S. PET und PET-CT maligner Tumoren des exokrinen Pankreas. Radiologe 49, 131–136 (2009). https://doi.org/10.1007/s00117-008-1756-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-008-1756-0

Schlüsselwörter

Keywords

Navigation