Skip to main content

Advertisement

Log in

Angeborene Fehlbildungen der Aorta im Kindes- und Jugendalter

Congenital abnormalities of the aorta in children and adolescents

  • Leitthema: Aorta
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Fehlbildungen der Aorta gehören zu den häufigen kongenitalen kardiovaskulären Malformationen (15–20% aller angeborenen Herzfehler). Die räumlich und zeitlich hochauflösenden Methoden der Computer- (CT-) und Magnetresonanztomographie (MRT) sind nichtinvasive, hochwertige und aussagekräftige Methoden zur Diagnostik angeborener Fehlbildungen der Aorta. Sie zeigen sich in der Diagnostik der Gefäßanomalien gleichwertig zur konventionellen Angiographie mit Sensitivitäten von mehr als 90%. In der Diagnostik assoziierter Komplikationen, wie trachealen, bronchialen oder ösophagialen Kompressionen, sind sie überlegen. Es konnte gezeigt werden, dass 80% der Kleinkinder mit Fehlbildungen der Aorta einen direkten Vorteil von der nichtinvasiven Bildgebung hatten: Entweder war eine Herzkatheterung für die Therapieplanung nicht mehr erforderlich oder die Durchleuchtungs- und Narkosezeiten bei der Katheterintervention konnten deutlich verkürzt werden.

Die wichtigsten angeborenen Fehlbildungen der Aorta im Kindes- und Jugendalter werden exemplarisch vorgestellt sowie die Möglichkeiten der CT und MRT zur Diagnostik.

Abstract

Aortic abnormalities are common cardiovascular malformations accounting for 15–20% of all congenital heart disease. Ultrafast CT and MR imaging are noninvasive, accurate and robust techniques that can be used in the diagnosis of aortic malformations. While their sensitivity in detecting vascular abnormalities seems to be as good as that of conventional catheter angiocardiography, at over 90%, they are superior in the diagnosis of potentially life-threatening complications, such as tracheal, bronchial, or esophageal compression. It has been shown that more than 80% of small children with aortic abnormalities benefit directly from the use of noninvasive imaging: either cardiac catheterization is no longer necessary or radiation doses and periods of general anesthesia for interventional catheterization procedures can be much reduced.

The most important congenital abnormalities of the aorta in children and adolescents are presented with reference to examples, and the value of CT and MR angiography is documented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Price WH, Clayton JF, Collyer S et al. (1986) Mortality ratios, life expectancy, and causes of death in patients with Turner’s syndrome. J Epidemiol Community Health 40: 97–102

    Article  PubMed  CAS  Google Scholar 

  2. Adams JN, Brooks M, Redpath TW et al. (1995) Aortic distensibility and stiffness index measured by magnetic resonance imaging in patients with Marfan’s syndrome. Br Heart J 73: 265–269

    Article  PubMed  CAS  Google Scholar 

  3. Pennell DJ, Sechtem UP, Higgins CB et al. (2004) Clinical indications for cardiovascular magnetic resonance (CMR): consensus panel report. Eur Heart J 25: 1940–1965

    Article  PubMed  Google Scholar 

  4. Eichhorn J, Fink C, Delorme S, Ulmer H (2004) Rings, slings and other vascular abnormalities. Ultrafast computed tomography and magnetic resonance angiography in pediatric cardiology. Z Kardiol 93: 201–208

    Article  PubMed  CAS  Google Scholar 

  5. Ley S, Zaporozhan J, Arnold R et al. (2007) Preoperative assessment and follow-up of congenital abnormalities of the pulmonary arteries using CT and MRI. Eur Radiol 17: 151–162

    Article  PubMed  Google Scholar 

  6. Eichhorn JG, Ley S, Arnold R et al. (2005) Belastungsabhängiger Stridor. Radiologe 45: 1038–1042

    Article  PubMed  CAS  Google Scholar 

  7. Eichhorn JG, Fink C, Long F et al. (2005) [Multidetector CT of congenital vascular anomalies and associated complications in newborns and infants]. Fortschr Röntgenstr 177: 1366–1372

    Article  CAS  Google Scholar 

  8. Eichhorn JG, Fink C, Delorme S et al. (2006) Magnetic resonance blood flow measurements in the follow-up of pediatric patients with aortic coarctation – a re-evaluation. Int J Cardiol 113: 291–298

    Article  PubMed  Google Scholar 

  9. Ganten M, Krautter U, Hosch W et al. (2007) Age related changes of human aortic distensibility: evaluation with ECG-gated CT. Eur Radiol 17: 701–708

    Article  PubMed  Google Scholar 

  10. Raman SV, Shah M, McCarthy B et al. (2006) Multi-detector row cardiac computed tomography accurately quantifies right and left ventricular size and function compared with cardiac magnetic resonance. Am Heart J 151: 736–744

    Article  PubMed  Google Scholar 

  11. Eichhorn JG, Krissak R, Rudiger HJ et al. (2007) [Compliance of the normal-sized aorta in adolescents with Marfan syndrome: comparison of MR measurements of aortic distensibility and pulse wave velocity.] Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 179: 841–846

  12. Society of Pediatric Radiology (2002) The ALARA (as low as reasonably achievable) concept in pediatric CT intelligent dose reduction. Multidisciplinary conference organized by the Society of Pediatric Radiology. August 18–19, 2001. Pediatr Radiol 32: 217–313

    Article  Google Scholar 

  13. Long FR, Castile RG, Brody AS et al. (1999) Lungs in infants and young children: improved thin-section CT with a noninvasive controlled-ventilation technique–initial experience. Radiology 212: 588–593

    PubMed  CAS  Google Scholar 

  14. Siegel MJ (2003) Multiplanar and three-dimensional multi-detector row CT of thoracic vessels and airways in the pediatric population. Radiology 229: 641–650

    Article  PubMed  Google Scholar 

  15. Siegel MJ, Schmidt B, Bradley D et al. (2004) Radiation dose and image quality in pediatric CT: effect of technical factors and phantom size and shape. Radiology 233: 515–522

    Article  PubMed  Google Scholar 

  16. Lee EY, Siegel MJ, Hildebolt CF et al. (2004) MDCT evaluation of thoracic aortic anomalies in pediatric patients and young adults: comparison of axial, multiplanar, and 3D images. AJR Am J Roentgenol 182: 777–784

    PubMed  Google Scholar 

  17. Sigal-Cinqualbre AB, Hennequin R, Abada HT et al. (2004) Low-kilovoltage multi-detector row chest CT in adults: feasibility and effect on image quality and iodine dose. Radiology 231: 169–174

    Article  PubMed  Google Scholar 

  18. Tzedakis A, Damilakis J, Perisinakis K et al. (2007) Influence of z overscanning on normalized effective doses calculated for pediatric patients undergoing multidetector CT examinations. Med Phys 34: 1163–1175

    Article  PubMed  Google Scholar 

  19. Goo HW, Park IS, Ko JK et al. (2003) CT of congenital heart disease: normal anatomy and typical pathologic conditions. Radiographics 23 Spec No: S147–S165

    Article  Google Scholar 

  20. Fink C, Eichhorn J, Kiessling F et al. (2003) Zeitlich aufgelöste multiphasische 3D-MR-Angiographie zur Diagnostik des Lungengefäßsystems bei Kindern. Fortschr Röntgenstr 175: 929–935

    Article  CAS  Google Scholar 

  21. High WA, Ayers RA, Chandler J et al. (2007) Gadolinium is detectable within the tissue of patients with nephrogenic systemic fibrosis. J Am Acad Dermatol 56: 21–26

    Article  PubMed  Google Scholar 

  22. Ley-Zaporozhan J, Unterhinninghofen R, Puderbach M et al. (2007) Visualization and measurement of the aorta using different non contrast-enhanced MR angiography techniques: Comparison with ECG-gated CT angiography. Eur Radiol 17 [suppl 1]: B-516

  23. Ozgun M, Hoffmeier A, Quante M et al. (2006) [Whole-heart coronary MR angiography – initial results.]. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 178: 500–507

    Article  PubMed  CAS  Google Scholar 

  24. Greil GF, Kramer U, Dammann F et al. (2005) Diagnosis of vascular rings and slings using an interleaved 3D double-slab FISP MR angiography technique. Pediatr Radiol 35: 396–401

    Article  PubMed  Google Scholar 

  25. Fleenor JT, Weinberg PM, Kramer SS, Fogel M (2003) Vascular rings and their effect on tracheal geometry. Pediatr Cardiol 24: 430–435

    Article  PubMed  CAS  Google Scholar 

  26. Keith HH (1977) Vascular rings and tracheobronchial compression in infants. Pediatr Ann 6: 540–591

    PubMed  CAS  Google Scholar 

  27. Gross RE (1970) Surgery for coarctation of the aorta in infants. Am J Cardiol 25: 507–508

    Article  PubMed  CAS  Google Scholar 

  28. Koller M, Rothlin M, Senning A (1987) Coarctation of the aorta: review of 362 operated patients. Long-term follow-up and assessment of prognostic variables. Eur Heart J 8: 670–679

    PubMed  CAS  Google Scholar 

  29. Cohen M, Fuster V, Steele PM et al. (1989) Coarctation of the aorta. Long-term follow-up and prediction of outcome after surgical correction. Circulation 80: 840–845

    PubMed  CAS  Google Scholar 

  30. Fawzy ME, Awad M, Hassan W et al. (2004) Long-term outcome (up to 15 years) of balloon angioplasty of discrete native coarctation of the aorta in adolescents and adults. J Am Coll Cardiol 43: 1062–1067

    Article  PubMed  Google Scholar 

  31. Riquelme C, Laissy JP, Menegazzo D et al. (1999) MR imaging of coarctation of the aorta and its postoperative complications in adults: assessment with spin-echo and cine-MR imaging. Magn Reson Imaging 17: 37–46

    Article  PubMed  CAS  Google Scholar 

  32. Stewart JR, Kincaid OW, Edwards JE (1964) An atlas of vascular rings and related malformation of the aortic arch system. Thomas, Springfield, Ill, USA, pp 3–129

  33. Sebening C, Jakob H, Tochtermann U et al. (2000) Vascular tracheobronchial compression syndromes–experience in surgical treatment and literature review. Thorac Cardiovasc Surg 48: 164–174

    Article  PubMed  CAS  Google Scholar 

  34. Berdon WE (2000) Rings, slings, and other things: vascular compression of the infant trachea updated from the midcentury to the millennium – the legacy of Robert E Gross MD, Edward BD, Neuhauser MD. Radiology 216: 624–632

    PubMed  CAS  Google Scholar 

  35. Pyeritz RE (2000) The Marfan syndrome. Annu Rev Med 51: 481–510

    Article  PubMed  CAS  Google Scholar 

  36. Treasure T (2000) Cardiovascular surgery for Marfan syndrome. Heart 84: 674–678

    Article  PubMed  CAS  Google Scholar 

  37. Gott VL, Greene PS, Alejo DE et al. (1999) Replacement of the aortic root in patients with Marfan’s syndrome. N Engl J Med 340: 1307–1313

    Article  PubMed  CAS  Google Scholar 

  38. Groenink M, de Roos A, Mulder BJ et al. (2001) Biophysical properties of the normal-sized aorta in patients with Marfan syndrome: evaluation with MR flow mapping. Radiology 219: 535–540

    PubMed  CAS  Google Scholar 

  39. Groenink M, Lohuis TA, Tijssen JG et al. (1999) Survival and complication free survival in Marfan’s syndrome: implications of current guidelines. Heart 82: 499–504

    PubMed  CAS  Google Scholar 

  40. Lehmann ED (1999) Clinical value of aortic pulse-wave velocity measurement. Lancet 354: 528–529

    Article  PubMed  CAS  Google Scholar 

  41. Boese JM, Bock M, Schoenberg SO, Schad LR (2000) Estimation of aortic compliance using magnetic resonance pulse wave velocity measurement. Phys Med Biol 45: 1703–1713

    Article  PubMed  CAS  Google Scholar 

  42. Nollen GJ, Groenink M, Tijssen JG et al. (2004) Aortic stiffness and diameter predict progressive aortic dilatation in patients with Marfan syndrome. Eur Heart J 25: 1146–1152

    Article  PubMed  Google Scholar 

  43. Ranke MB, Saenger P (2001) Turner’s syndrome. Lancet 358: 309–314

    Article  PubMed  CAS  Google Scholar 

  44. Elsheikh M, Dunger DB, Conway GS, Wass JA (2002) Turner’s syndrome in adulthood. Endocr Rev 23: 120–140

    Article  PubMed  CAS  Google Scholar 

  45. Swerdlow AJ, Hermon C, Jacobs PA et al. (2001) Mortality and cancer incidence in persons with numerical sex chromosome abnormalities: a cohort study. Ann Hum Genet 65: 177–188

    Article  PubMed  CAS  Google Scholar 

  46. Ostberg JE, Brookes JA, McCarthy C et al. (2004) A comparison of echocardiography and magnetic resonance imaging in cardiovascular screening of adults with Turner syndrome. J Clin Endocrinol Metab 89: 5966–5971

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.G. Eichhorn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eichhorn, J., Ley, S. Angeborene Fehlbildungen der Aorta im Kindes- und Jugendalter. Radiologe 47, 974–981 (2007). https://doi.org/10.1007/s00117-007-1575-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-007-1575-8

Schlüsselwörter

Keywords

Navigation